Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient

被引:0
|
作者
Wang, Xinghui [1 ,2 ]
Geng, Wenjing [1 ]
Han, Ruidong [3 ]
Xu, Qifa [2 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[3] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Limit distribution; Moderate deviations; M-estimate; Unit root; MODERATE DEVIATIONS; LIMIT THEORY; MODELS;
D O I
10.1007/s11009-023-10005-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a first-order autoregressive process with a general autoregressive coefficient. Asymptotic behaviors of an M-estimator of the autoregressive coefficient are established for the nearly stationary and mildly explosive cases, respectively. The rate of convergence of the robust estimators for the two cases are provided. The results extend ones for the least squares and least absolute deviation estimators to the robust estimator under the weaker initial conditions in the literature. Some simulations are carried out to assess the performance of our procedure.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Empirical likelihood M-estimation for the varying-coefficient model with functional response
    Zhou, Xingcai
    Kong, Dehan
    Pietrosanu, Matthew Stephen
    Kong, Linglong
    Karunamuni, Rohana J.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (03) : 1357 - 1387
  • [22] M-estimation in Low-rank Matrix Factorization: a General Framework
    Liu, Peng
    Tu, Wei
    Zhao, Jingyu
    Liu, Yi
    Kong, Linglong
    Li, Guodong
    Jiang, Bei
    Yao, Hengshuai
    Tian, Guangjian
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 568 - 577
  • [23] Asymptotic statistical properties of autoregressive model for mixed spectrum estimation
    Sherman, PJ
    Lau, SS
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2289 - 2292
  • [24] A robust M-estimation framework for spatial autoregressive models: loss function design and optimization strategies
    Zhan, Wenxi
    Hu, Yu
    Zeng, Wenxian
    Fang, Xing
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2025,
  • [25] GPS position time-series analysis based on asymptotic normality of M-estimation
    Khodabandeh, A.
    Amiri-Simkooei, A. R.
    Sharifi, M. A.
    JOURNAL OF GEODESY, 2012, 86 (01) : 15 - 33
  • [26] High dimensional robust M-estimation: asymptotic variance via approximate message passing
    Donoho, David
    Montanari, Andrea
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (3-4) : 935 - 969
  • [27] High dimensional robust M-estimation: asymptotic variance via approximate message passing
    David Donoho
    Andrea Montanari
    Probability Theory and Related Fields, 2016, 166 : 935 - 969
  • [28] Testing of homogeneity of variance and autocorrelation coefficients of nonlinear mixed models with AR(1) errors based on M-estimation
    Sun, Huihui
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (02) : 362 - 375
  • [29] M-estimation and B-spline approximation for varying coefficient models with longitudinal data
    Tang Qingguo
    Cheng Longsheng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (07) : 611 - 625
  • [30] Sieve M-estimation for semiparametric varying-coefficient partially linear regression model
    Hu Tao
    Cui HengJian
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 1995 - 2010