A mesh-free finite-difference scheme for frequency-domain acoustic wave simulation with topography

被引:0
|
作者
Cai, Xiao-Hui [1 ]
Huang, Chan-Juan [1 ]
Tao-Ran [1 ]
Fan, Xiao-Ping [1 ]
Liu, Heng [1 ]
机构
[1] Nanjing Tech Univ, Inst Geotechn Engn, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
acoustic wave; frequency domain; mesh-free nodes; numerical simulation; topography; PERFECTLY MATCHED LAYER; POINT INTERPOLATION METHOD; BOUNDARY-CONDITIONS; ORDER ACCURACY;
D O I
10.1007/s11770-022-0981-z
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the increasing complexity of seismic exploration objects, numerical simulation methods that can accurately describe topographical surfaces and complex geological structures are very important. In this study, we propose a mesh-free finite-difference method for frequency-domain numerical simulation with topography. The mesh-free nodes method theoretically applies to any surface and geological structure, whereas the finite-difference scheme has the advantages of high calculation efficiency, small memory occupation, and high simulation accuracy. Therefore, the mesh-free finite-difference method ensures high efficiency and is suitable for irregular surfaces. In addition, we introduce the perfectly matched layer (PML) absorbing boundary condition into the mesh-free numerical simulation, and we compare the performance of the simplified PML, the classical PML, and the complex frequency-shifted PML methods in suppressing boundary reflections. Then, the complex frequency-shift PML method, which is more accurate in suppressing boundary reflections under topographical surface conditions, is applied to the comparison of the mesh-free and regular grid numerical simulations. The comparisons reflected in snapshots, seismic records, and seismic wavelets demonstrate the effectiveness of the proposed mesh-free finite-difference method. Finally, the proposed numerical simulation method is applied to the Marmousi model and field data with topography to further demonstrate its effectiveness.
引用
收藏
页码:447 / 459
页数:13
相关论文
共 50 条
  • [31] Numerical modeling of elastic wave in frequency-domain by using staggered grid fourth-order finite-difference scheme
    Ma C.
    Gao Y.
    Lu C.
    Advances in Geo-Energy Research, 2019, 3 (04): : 410 - 423
  • [32] Frequency-domain finite-difference amplitude-preserving migration
    Plessix, RE
    Mulder, WA
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 157 (03) : 975 - 987
  • [33] FINITE-DIFFERENCE FREQUENCY-DOMAIN (FDFD) MODELING OF EMI BY ESD
    ANGELI, M
    CARDELLI, E
    IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) : 2064 - 2067
  • [34] Modeling of Nanophotonic Resonators With the Finite-Difference Frequency-Domain Method
    Ivinskaya, Aliaksandra M.
    Lavrinenko, Andrei V.
    Shyroki, Dzmitry M.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (11) : 4155 - 4161
  • [35] Subsampling of fine features in finite-difference frequency-domain simulations
    Wykes, JG
    Sewell, P
    Vukovic, A
    Benson, TM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 44 (01) : 95 - 101
  • [36] Finite-difference frequency-domain (FDFD) modelling of EMI by ESD
    Angeli, Marco
    Cardelli, Ermanno
    1600, IEEE, Piscataway, NJ, United States (31):
  • [37] FINITE-DIFFERENCE FREQUENCY-DOMAIN TREATMENT OF OPEN TRANSMISSION STRUCTURES
    SARKAR, TK
    MANELA, M
    NARAYANAN, V
    DJORDJEVIC, AR
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (11) : 1609 - 1616
  • [38] A finite-difference frequency-domain code for electromagnetic induction tomography
    Champagne, NJ
    Berryman, JG
    Buettner, HM
    Grant, JB
    Sharpe, RM
    PROCEEDINGS OF THE SYMPOSIUM ON THE APPLICATION OF GEOPHYSICS TO ENGINEERING AND ENVIRONMENTAL PROBLEMS, 1999, : 931 - 940
  • [39] Improved finite-difference frequency-domain scheme for the analysis of 2-D photonic crystals
    Chiang, Yen-Chung
    Chiou, Yih-Peng
    Chang, Hung-Chun
    2007 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-6, 2007, : 1942 - +
  • [40] An adaptive free-surface expression for three-dimensional finite-difference frequency-domain modelling of elastic wave
    Cao, Jian
    Chen, Jing-Bo
    Dai, Meng-Xue
    GEOPHYSICAL PROSPECTING, 2018, 66 (04) : 707 - 725