Numerical study of fractional phi-4 equation

被引:1
|
作者
Massoun, Y. [1 ]
Cesarano, C. [2 ]
Alomari, A. K. [3 ]
Said, A. [4 ]
机构
[1] Univ Algiers, Fac Sci, Dept Math, Algiers, Algeria
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Yarmouk Univ, Fac Sci, Dept Math, Irbid 21163, Jordan
[4] Univ Djilali Bounaama, Fac Sci, Dept Math, Khemise Miliana, Algeria
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 04期
关键词
phi-4; equation; Caputo fractional derivative; homotopy analysis method; HOMOTOPY ANALYSIS METHOD;
D O I
10.3934/math.2024418
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we established an analytical solution for the fractional phi-4 model within the Caputo derivative using the homotopy analysis method. This equation known for its nonlinear characteristics often describes various physical phenomena like solitons, wave propagation, and field theories. The fractional version introduces fractional derivatives, making it even more challenging. The homotopy analysis method can effectively handle these nonlinearities. Our objective was to illustrate the reliability and accuracy of our proposed algorithm, which we achieved through a comparative analysis against results obtained using the Yang transform decomposition method. Using the residual error to determine the optimal value of the convergence control parameter h, the results presented underscored the remarkable efficiency and accuracy of this approach.
引用
收藏
页码:8630 / 8640
页数:11
相关论文
共 50 条
  • [21] MONTE-CARLO EVALUATION OF THE CONTINUUM-LIMIT OF (PHI-4)4 AND (PHI-4)3
    FREEDMAN, B
    SMOLENSKY, P
    WEINGARTEN, D
    PHYSICS LETTERS B, 1982, 113 (06) : 481 - 486
  • [22] PHI-4 IN 3-DIMENSIONS - A STOCHASTIC SLAVE EQUATION SIMULATION
    WESTON, RA
    PHYSICS LETTERS B, 1989, 219 (2-3) : 315 - 322
  • [23] FINITE-FIELD EQUATION FOR ASYMPTOTICALLY FREE PHI-4 THEORY
    BRANDT, RA
    WINGCHIU, N
    WAIBONG, Y
    PHYSICAL REVIEW D, 1979, 19 (02): : 503 - 510
  • [24] EXACT TRAVELING-WAVE SOLUTIONS TO THE PERTURBED PHI-4 EQUATION
    GEICKE, J
    PHYSICA D, 1987, 28 (1-2): : 234 - 234
  • [25] Direct approach for kink solution of phi-4 equation under perturbation
    Tang, Y
    Yan, JR
    Chen, ZH
    CHINESE PHYSICS LETTERS, 1997, 14 (11): : 845 - 848
  • [26] (PHI-4)4-WAVEPACKETS
    BISSHOPP, F
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (03) : 568 - &
  • [27] IS PHI-4 THEORY FREE
    CASWELL, B
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1985, 11 (10) : L179 - L181
  • [28] A MONTE-CARLO STUDY OF PHI-4 IN 4 DIMENSIONS
    FOX, IA
    HALLIDAY, IG
    PHYSICS LETTERS B, 1985, 159 (2-3) : 148 - 150
  • [29] MOLECULAR-DYNAMICS STUDY OF THE PHI-4 CHAIN
    IMADA, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (01) : 179 - 183
  • [30] A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation
    Ullah, Ikram
    Bilal, Muhammad
    Sharma, Aditi
    Khan, Hasim
    Bhardwaj, Shivam
    Sharma, Sunil Kumar
    AIMS MATHEMATICS, 2024, 9 (11): : 32674 - 32695