Multitree Genetic Programming With Feature-Based Transfer Learning for Symbolic Regression on Incomplete Data

被引:1
|
作者
Al-Helali, Baligh [1 ]
Chen, Qi [1 ]
Xue, Bing [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Evolutionary Computat & Machine Learning Res Grp, Wellington 6140, New Zealand
关键词
Task analysis; Feature extraction; Data models; Transfer learning; Contracts; Adaptation models; Routing; Genetic programming (GP); incomplete data; symbolic regression (SR); transfer learning (TL); CLASSIFICATION;
D O I
10.1109/TCYB.2023.3270319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data incompleteness is a serious challenge in real-world machine-learning tasks. Nevertheless, it has not received enough attention in symbolic regression (SR). Data missingness exacerbates data shortage, especially in domains with limited available data, which in turn limits the learning ability of SR algorithms. Transfer learning (TL), which aims to transfer knowledge across tasks, is a potential solution to solve this issue by making amends for the lack of knowledge. However, this approach has not been adequately investigated in SR. To fill this gap, a multitree genetic programming-based TL method is proposed in this work to transfer knowledge from complete source domains (SDs) to incomplete related target domains (TDs). The proposed method transforms the features from a complete SD to an incomplete TD. However, having many features complicates the transformation process. To mitigate this problem, we integrate a feature selection mechanism to eliminate unnecessary transformations. The method is examined on real-world and synthetic SR tasks with missing values to consider different learning scenarios. The obtained results not only show the effectiveness of the proposed method but also show its training efficiency compared with the existing TL methods. Compared to state-of-the-art methods, the proposed method reduced an average of more than 2.58% and 4% regression error on heterogeneous and homogeneous domains, respectively.
引用
收藏
页码:4014 / 4027
页数:14
相关论文
共 50 条
  • [21] Improving Genetic Programming Based Symbolic Regression Using Deterministic Machine Learning
    Icke, Ilknur
    Bongard, Joshua C.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1763 - 1770
  • [22] Semantic schema based genetic programming for symbolic regression
    Zojaji, Zahra
    Ebadzadeh, Mohammad Mehdi
    Nasiri, Hamid
    APPLIED SOFT COMPUTING, 2022, 122
  • [23] Symbolic regression on noisy data with genetic and gene expression programming
    Bautu, E
    Bautu, A
    Luchian, H
    Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 321 - 324
  • [24] Feature-based Distant Domain Transfer Learning
    Niu, Shuteng
    Hu, Yihao
    Wang, Jian
    Liu, Yongxin
    Song, Houbing
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5164 - 5171
  • [25] Feature-Based Transfer Learning for Network Security
    Zhao, Juan
    Shetty, Sachin
    Pan, Jan Wei
    MILCOM 2017 - 2017 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2017, : 17 - 22
  • [26] Feature-Based Transfer Learning Based on Distribution Similarity
    Zhong, Xiaofeng
    Guo, Shize
    Shan, Hong
    Gao, Liang
    Xue, Di
    Zhao, Nan
    IEEE ACCESS, 2018, 6 : 35551 - 35557
  • [27] Genetic Programming with Embedded Feature Construction for High-Dimensional Symbolic Regression
    Chen, Qi
    Zhang, Mengjie
    Xue, Bing
    INTELLIGENT AND EVOLUTIONARY SYSTEMS, IES 2016, 2017, 8 : 87 - 102
  • [28] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [29] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [30] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178