Transcriptome Analysis of Roots from Wheat (Triticum aestivum L.) Varieties in Response to Drought Stress

被引:7
|
作者
Xi, Wei [1 ,2 ,3 ]
Hao, Chenyang [3 ]
Li, Tian [3 ]
Wang, Huajun [1 ,2 ]
Zhang, Xueyong [1 ,2 ,3 ]
机构
[1] Gansu Agr Univ, Coll Agron, Lanzhou 730070, Peoples R China
[2] Gansu Agr Univ, State Key Lab Aridland Crop Sci, Gansu Key Lab Crop Improvement & Germplasm Enhance, Lanzhou 730070, Peoples R China
[3] Chinese Acad Agr Sci, Inst Crop Sci, Key Lab Crop Gene Resources & Germplasm Enhancemen, Minist Agr & Rural Affaris,Natl Key Facil Crop Gen, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
wheat; RNA-seq; DEGs; GO; stress treatment; RT-qPCR; RNA-SEQ; GENOME SEQUENCE; MECHANISMS; STRINGTIE; GENES;
D O I
10.3390/ijms24087245
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Under climate change, drought is one of the most limiting factors that influences wheat (Triticum aestivum L.) production. Exploring stress-related genes is vital for wheat breeding. To identify genes related to the drought tolerance response, two common wheat cultivars, Zhengmai 366 (ZM366) and Chuanmai 42 (CM42), were selected based on their obvious difference in root length under 15% PEG-6000 treatment. The root length of the ZM366 cultivar was significantly longer than that of CM42. Stress-related genes were identified by RNA-seq in samples treated with 15% PEG-6000 for 7 days. In total, 11,083 differentially expressed genes (DEGs) and numerous single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were identified. GO enrichment analysis revealed that the upregulated genes were mainly related to the response to water, acidic chemicals, oxygen-containing compounds, inorganic substances, and abiotic stimuli. Among the DEGs, the expression levels of 16 genes in ZM366 were higher than those in CM42 after the 15% PEG-6000 treatment based on RT-qPCR. Furthermore, EMS-induced mutants in Kronos (T. turgidum L.) of 4 representative DEGs possessed longer roots than the WT after the 15% PEG-6000 treatment. Altogether, the drought stress genes identified in this study represent useful gene resources for wheat breeding.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Molecular evaluation of several wheat varieties of Triticum aestivum L.
    Ramadan, Ahmed Shehab Abd-allah
    Mukhlif, Fadhil Hussein
    Al-Rawi, Ali Abdulhadi
    Abdulrazzaq, Mohammed H. M.
    Mousa, Mohammed Othman
    Shahatha, Suad Shallal
    PLANT SCIENCE TODAY, 2024, 11 (03): : 612 - 617
  • [32] CORRELATION AND PATH COEFFICIENT ANALYSIS IN WHEAT (TRITICUM AESTIVUM L.) UNDER VARIOUS DROUGHT STRESS CONDITIONS
    Zare, Mahdi
    Shokrpour, Majid
    Nejad, Seyedeh Elaheh Hashemi
    BANGLADESH JOURNAL OF BOTANY, 2017, 46 (04): : 1309 - 1315
  • [33] EFFECT OF WATER STRESS ON YIELD AND YIELD COMPONENTS OF WHEAT (TRITICUM AESTIVUM L.) VARIETIES
    Mirbahar, Ameer Ahmed
    Markhand, G. S.
    Mahar, A. R.
    Abro, Saeed Akhter
    Kanhar, Nisar Ahmed
    PAKISTAN JOURNAL OF BOTANY, 2009, 41 (03) : 1303 - 1310
  • [34] Significance of inoculation with Bacillus subtilis to alleviate drought stress in wheat (Triticum aestivum L.)
    Sood G.
    Kaushal R.
    Sharma M.
    Vegetos, 2020, 33 (4): : 782 - 792
  • [35] Transgenerational memory of the effect of drought stress on wheat (Triticum aestivum L.) grain yield
    D. E. Becheran
    L. G. Abeledo
    A. Y. Beznec
    E. Bossio
    P. Faccio
    D. J. Miralles
    Euphytica, 2023, 219
  • [36] Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress
    Attila Fábián
    Katalin Jäger
    Mariann Rakszegi
    Beáta Barnabás
    Plant Cell Reports, 2011, 30 : 551 - 563
  • [37] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Ankita Pandey
    Mamrutha Harohalli Masthigowda
    Rakesh Kumar
    Shalini Mishra
    Rinki Khobra
    Girish Chandra Pandey
    Gyanendra Singh
    Gyanendra Pratap Singh
    Plant Physiology Reports, 2023, 28 : 63 - 77
  • [38] Screening of spring wheat (Triticum aestivum L.) germplasm against drought and heat stress
    Muhammad Azher Qureeshi
    Fida Hussain
    Ijaz Rasool Noorka
    Saeed Rauf
    Cereal Research Communications, 2021, 49 : 365 - 374
  • [39] Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.)
    Amoah, Joseph Noble
    Ko, Chan Seop
    Yoon, Jin Seok
    Weon, Seo Yong
    JOURNAL OF PLANT INTERACTIONS, 2019, 14 (01) : 492 - 505
  • [40] Screening of spring wheat (Triticum aestivum L.) germplasm against drought and heat stress
    Qureeshi, Muhammad Azher
    Hussain, Fida
    Noorka, Ijaz Rasool
    Rauf, Saeed
    CEREAL RESEARCH COMMUNICATIONS, 2021, 49 (03) : 365 - 374