Survey on crop pest detection using deep learning and machine learning approaches

被引:27
|
作者
Chithambarathanu, M. [1 ]
Jeyakumar, M. K. [2 ]
机构
[1] Noorul Islam Ctr Higher Educ, Dept Comp Sci & Engn, Kumaracoil, Tamilnadu, India
[2] Noorul Islam Ctr Higher Educ, Dept Comp Applicat, Kumaracoil, Tamilnadu, India
关键词
Agriculture; Pest identification for citrus; Identification of rice pests; Pesticide identification for cotton; Deep learning; Machine learning; CITRUS DISEASES; RECOGNITION; CLASSIFICATION; IDENTIFICATION; SYSTEM; SEGMENTATION; ALGORITHM; SELECTION; LEAVES;
D O I
10.1007/s11042-023-15221-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most important elements in the realm of commercial food standards are effective pest management and control. Crop pests can make a huge impact on crop quality and productivity. It is critical to seek and develop new tools to diagnose the pest disease before it caused major crop loss. Crop abnormalities, pests, or dietetic deficiencies have usually been diagnosed by human experts. Anyhow, this was both costly and time-consuming. To resolve these issues, some approaches for crop pest detection have to be focused on. A clear overview of recent research in the area of crop pests and pathogens identification using techniques in Machine Learning Techniques like Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT), Naive Bayes (NB), and also some Deep Learning methods like Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Deep convolutional neural network (DCNN), Deep Belief Network (DBN) was presented. The outlined strategy increases crop productivity while providing the highest level of crop protection. By offering the greatest amount of crop protection, the described strategy improves crop efficiency. This survey provides knowledge of some modern approaches for keeping an eye on agricultural fields for pest detection and contains a definition of plant pest detection to identify and categorise citrus plant pests, rice, and cotton as well as numerous ways of detecting them. These methods enable automatic monitoring of vast domains, therefore lowering human error and effort.
引用
收藏
页码:42277 / 42310
页数:34
相关论文
共 50 条
  • [21] A Survey on Different Approaches for Malware Detection Using Machine Learning Techniques
    Rani, S. Soja
    Reeja, S. R.
    SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2019, 2020, 39 : 389 - 398
  • [22] Review of Crop Disease and Pest Detection Algorithms Based on Deep Learning
    Mu J.
    Ma B.
    Wang Y.
    Ren Z.
    Liu S.
    Wang J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 : 301 - 313
  • [23] An Enhanced Deep Learning Model for Effective Crop Pest and Disease Detection
    Yuan, Yongqi
    Sun, Jinhua
    Zhang, Qian
    JOURNAL OF IMAGING, 2024, 10 (11)
  • [24] Utilizing Machine Learning and Deep Learning Approaches for the Detection of Cyberbullying Issues
    Ostayeva, Aiymkhan
    Kozhamkulova, Zhazira
    Kozhamkulova, Zhadra
    Aimakhanov, Yerkebulan
    Abylkhassenova, Dina
    Serik, Aisulu
    Turganbay, Kuralay
    Tenizbayev, Yegenberdi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 1154 - 1161
  • [25] The Role of Machine Learning and Deep Learning Approaches for the Detection of Skin Cancer
    Mazhar, Tehseen
    Haq, Inayatul
    Ditta, Allah
    Mohsan, Syed Agha Hassnain
    Rehman, Faisal
    Zafar, Imran
    Gansau, Jualang Azlan
    Goh, Lucky Poh Wah
    HEALTHCARE, 2023, 11 (03)
  • [26] Exploring Deep Learning and Machine Learning Approaches for Brain Hemorrhage Detection
    Ahmed, Samia
    Esha, Jannatul Ferdous
    Rahman, Md. Sazzadur
    Kaiser, M. Shamim
    Hosen, A. S. M. Sanwar
    Ghimire, Deepak
    Park, Mi Jin
    IEEE ACCESS, 2024, 12 : 45060 - 45093
  • [27] A Study: Machine Learning and Deep Learning Approaches for Intrusion Detection System
    Sekhar, C. H.
    Rao, K. Venkata
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGIES, ICCNCT 2019, 2020, 44 : 845 - 849
  • [28] Cyberbullying Detection using Machine Learning and Deep Learning
    Alabdulwahab, Aljwharah
    Haq, Mohd Anul
    Alshehri, Mohammed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 424 - 432
  • [29] Fraud Detection Using Machine Learning and Deep Learning
    Gandhar A.
    Gupta K.
    Pandey A.K.
    Raj D.
    SN Computer Science, 5 (5)
  • [30] Fraud Detection using Machine Learning and Deep Learning
    Raghavan, Pradheepan
    El Gayar, Neamat
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 335 - 340