Traffic data extraction and labeling for machine learning based attack detection in IoT networks

被引:8
|
作者
Gebrye, Hayelom [1 ,2 ]
Wang, Yong [1 ]
Li, Fagen [1 ]
机构
[1] Univ Elect Sci & Technol China, Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Raya Univ, Informat Technol, Maychew, Ethiopia
关键词
Attack detection; Data extraction; Data labeling; IoT networks; Machine learning; ALGORITHMS;
D O I
10.1007/s13042-022-01765-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fast expansion of the Internet of Things (IoT) networks raises the possibility of further network threats. In today's world, network traffic analysis has become an increasingly critical and useful tool for monitoring network traffic in general and analyzing attack patterns in particular. A few years ago, distributed denial-of-service attacks on IoT networks were considered the most pressing problem that needed to be addressed. The absence of high-quality datasets is one of the main obstacles to applying DDOS detection systems based on machine learning. Researchers have developed numerous methods to extract and analyze information from recorded files. From a literature review, it is clear that most of these tools share similar drawbacks. In this study, we proposed an intelligent raw network data extractor and labeler tool by incorporating the limitations of the tools that are available to transform PCAP to CSV. To generate and process a high-quality DDOS attack dataset suitable for machine learning models, we employed several data preprocessing operations on the selected network intrusion dataset. To confirm the validity and acceptability of the dataset, we tested different models. Among the models tested, the random forest was the most accurate in detecting the DDOS attack.
引用
收藏
页码:2317 / 2332
页数:16
相关论文
共 50 条
  • [21] Machine-Learning-Based Darknet Traffic Detection System for IoT Applications
    Abu Al-Haija, Qasem
    Krichen, Moez
    Abu Elhaija, Wejdan
    ELECTRONICS, 2022, 11 (04)
  • [22] Enhanced Machine Learning Based Network Traffic Detection Model for IoT Network
    Alzyoud, Mazen
    Al-Shanableh, Najah
    Nashnush, Eman
    Shboul, Rabah
    Alazaidah, Raed
    Samara, Ghassan
    Alhusban, Safaa
    International Journal of Interactive Mobile Technologies, 2024, 18 (19) : 182 - 198
  • [23] A machine learning based framework for IoT device identification and abnormal traffic detection
    Salman, Ola
    Elhajj, Imad H.
    Chehab, Ali
    Kayssi, Ayman
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (03)
  • [24] Anomaly Detection with Feature Extraction Based on Machine Learning Using Hydraulic System IoT Sensor Data
    Kim, Doyun
    Heo, Tae-Young
    SENSORS, 2022, 22 (07)
  • [25] Denial of service attack detection through machine learning for the IoT
    Syed, Naeem Firdous
    Baig, Zubair
    Ibrahim, Ahmed
    Valli, Craig
    JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2020, 4 (04) : 482 - 503
  • [26] Machine Learning-based Jamming Detection in Wireless IoT Networks
    Upadhyaya, Bikalpa
    Sun, Sumei
    Sikdar, Biplab
    2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019), 2019,
  • [27] Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture†
    Soe, Yan Naung
    Feng, Yaokai
    Santosa, Paulus Insap
    Hartanto, Rudy
    Sakurai, Kouichi
    SENSORS, 2020, 20 (16) : 1 - 15
  • [28] Machine learning-based DDOS attack detection and mitigation in SDNs for IoT environments
    Kavitha, D.
    Ramalakshmi, R.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [29] Federated Learning for Decentralized DDoS Attack Detection in IoT Networks
    Alhasawi, Yaser
    Alghamdi, Salem
    IEEE ACCESS, 2024, 12 : 42357 - 42368
  • [30] POSTER: Activity Graph Learning for Attack Detection in IoT Networks
    Messai, Mohamed-Lamine
    Seba, Hamida
    2023 IEEE 24TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM, 2023, : 320 - 322