UNSUPERVISED DYNAMIC CONVOLUTIONAL NEURAL NETWORK MODEL FOR HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION

被引:2
|
作者
Yu, Haoyang [1 ]
Ling, Zhixin [1 ]
Zheng, Ke [2 ]
Li, Jiaxin [3 ,4 ]
Liang, Siqi [1 ]
Gao, Lianru [3 ]
机构
[1] Dalian Maritime Univ, CHIRS, Informat Sci & Technol Coll, Dalian 116026, Peoples R China
[2] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252000, Shandong, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Unsupervised learning; image fusion; hyperspectral image; multispectral image; dynamic convolutional neural network;
D O I
10.1109/IGARSS52108.2023.10282786
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In recent years, fusion methods based on unsupervised deep learning have achieved impressive performance in the fusion of hyperspectral image (HSI) and multispectral image (MSI). However, there are still some limitations in the current research. Most existing fusion methods only apply to simulated data and need more verification on real data sets. To solve these issues, this paper designed an unsupervised dynamic convolutional neural network fusion model (UDCNN), which can adaptively learn the radiometric difference between HSI and MSI. This model achieves better performance on simulated data compared with related unsupervised deep learning methods, and achieves more accurate results on real data through classification-oriented application of the fusion results.
引用
收藏
页码:6270 / 6273
页数:4
相关论文
共 50 条
  • [21] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [22] SURE-ERGAS: UNSUPERVISED DEEP LEARNING MULTISPECTRAL AND HYPERSPECTRAL IMAGE FUSION
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5623 - 5626
  • [23] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION BASED ON DEEP ATTENTION NETWORK
    Yang, Qing
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [24] HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion
    Li, Kun
    Zhang, Wei
    Yu, Dian
    Tian, Xin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 30 - 44
  • [25] Interpretable Model-Driven Deep Network for Hyperspectral, Multispectral, and Panchromatic Image Fusion
    Tian, Xin
    Li, Kun
    Zhang, Wei
    Wang, Zhongyuan
    Ma, Jiayi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14382 - 14395
  • [26] Performance Evaluation of Convolutional Neural Network at Hyperspectral and Multispectral Resolution for Classification
    Paul, Subir
    Vinayaraj, Poliyapram
    Kumar, D. Nagesh
    Nakamura, Ryosuke
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [27] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    REMOTE SENSING, 2022, 14 (07)
  • [28] A Lightweight Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4150 - 4163
  • [29] A dense convolutional neural network for hyperspectral image classification
    Zhi, Lu
    Yu, Xuchu
    Liu, Bing
    Wei, Xiangpo
    REMOTE SENSING LETTERS, 2019, 10 (01) : 59 - 66
  • [30] Compressive hyperspectral and multispectral image fusion
    Espitia, Oscar
    Castillo, Sergio
    Arguello, Henry
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840