UNSUPERVISED DYNAMIC CONVOLUTIONAL NEURAL NETWORK MODEL FOR HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION

被引:2
|
作者
Yu, Haoyang [1 ]
Ling, Zhixin [1 ]
Zheng, Ke [2 ]
Li, Jiaxin [3 ,4 ]
Liang, Siqi [1 ]
Gao, Lianru [3 ]
机构
[1] Dalian Maritime Univ, CHIRS, Informat Sci & Technol Coll, Dalian 116026, Peoples R China
[2] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252000, Shandong, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Unsupervised learning; image fusion; hyperspectral image; multispectral image; dynamic convolutional neural network;
D O I
10.1109/IGARSS52108.2023.10282786
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In recent years, fusion methods based on unsupervised deep learning have achieved impressive performance in the fusion of hyperspectral image (HSI) and multispectral image (MSI). However, there are still some limitations in the current research. Most existing fusion methods only apply to simulated data and need more verification on real data sets. To solve these issues, this paper designed an unsupervised dynamic convolutional neural network fusion model (UDCNN), which can adaptively learn the radiometric difference between HSI and MSI. This model achieves better performance on simulated data compared with related unsupervised deep learning methods, and achieves more accurate results on real data through classification-oriented application of the fusion results.
引用
收藏
页码:6270 / 6273
页数:4
相关论文
共 50 条
  • [1] FusionNet: An Unsupervised Convolutional Variational Network for Hyperspectral and Multispectral Image Fusion
    Wang, Zhengjue
    Chen, Bo
    Lu, Ruiying
    Zhang, Hao
    Liu, Hongwei
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7565 - 7577
  • [2] Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 639 - 643
  • [3] Pyramid Fully Convolutional Network for Hyperspectral and Multispectral Image Fusion
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1549 - 1558
  • [4] Unsupervised Deep Tensor Network for Hyperspectral-Multispectral Image Fusion
    Yang, Jingxiang
    Xiao, Liang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 13017 - 13031
  • [5] Hyperspectral and Multispectral Image Fusion via Deep Two-Branches Convolutional Neural Network
    Yang, Jingxiang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    REMOTE SENSING, 2018, 10 (05)
  • [6] A model-guided deep convolutional sparse coding network for hyperspectral and multispectral image fusion
    Khader, Abdolraheem
    Xiao, Liang
    Yang, Jingxiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (06) : 2268 - 2295
  • [7] Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion
    Cao, Xuheng
    Lian, Yusheng
    Wang, Kaixuan
    Ma, Chao
    Xu, Xianqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [8] Coupled Convolutional Neural Network-Based Detail Injection Method for Hyperspectral and Multispectral Image Fusion
    Lu, Xiaochen
    Yang, Dezheng
    Jia, Fengde
    Zhao, Yifeng
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 13
  • [9] UMTF-Net: An Unsupervised Multiscale Transformer Fusion Network for Hyperspectral and Multispectral Image Fusion
    Liu, Shuaiqi
    Zhang, Shichong
    Liu, Siyuan
    Li, Bing
    Zhang, Yu-Dong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17221 - 17238
  • [10] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):