A lightweight deep learning model for real-time face recognition

被引:7
|
作者
Deng, Zong-Yue [1 ]
Chiang, Hsin-Han [2 ]
Kang, Li-Wei [1 ]
Li, Hsiao-Chi [3 ,4 ]
机构
[1] Natl Taiwan Normal Univ, Dept Elect Engn, Taipei, Taiwan
[2] Natl Taipei Univ Technol, Dept Vehicle Engn, Taipei, Taiwan
[3] Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
[4] Natl Taipei Univ Technol, 1Sec 3,Zhongxiao E Rd, Taipei 10608, Taiwan
关键词
convolutional neural nets; face recognition; image recognition; lightweight deep model; one-shot learning; deep convolutional neural network;
D O I
10.1049/ipr2.12903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lightweight deep learning models for face recognition are becoming increasingly crucial for deployment on resource-constrained devices such as embedded systems or mobile devices. This paper presents a highly efficient and compact deep learning (DL) model that achieves state-of-the-art performance on various face recognition benchmarks. The developed DL model employs one- or few-shot learning to obtain effective feature embeddings and draws inspiration from FaceNet with significant refinements to achieve a memory size of only 3.5 MB-about 30 times smaller than FaceNet-while maintaining high accuracy and real-time performance. The study demonstrates the model's effectiveness through extensive experiments, which include testing on public datasets and the model's ability to recognize occluded faces in uncontrolled environments using grayscale input images. Compared to the state-of-the-art lightweight models, the proposed model requires fewer FLOPs (0.06G), has a smaller number of parameters (1.2 M), and occupies a smaller model size (3.5 MB) while achieving a competitive level of recognition accuracy and real-time performance. The results show that the model is well-suited for deployment in embedded domains, including live entrance security checks, driver authorization, and in-class attendance systems. The entire code of FN8 is available on GitHub.
引用
收藏
页码:3869 / 3883
页数:15
相关论文
共 50 条
  • [21] A Real-Time CNN-Based Lightweight Mobile Masked Face Recognition System
    Kocacinar, Busra
    Tas, Bilal
    Akbulut, Fatma Patlar
    Catal, Cagatay
    Mishra, Deepti
    IEEE ACCESS, 2022, 10 : 63496 - 63507
  • [22] Real-time masked face recognition using deep learning-based double generator network
    Sumathy, G.
    Usha, M.
    Rajakumar, S.
    Jayapriya, P.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 325 - 334
  • [23] Real-Time Arabic Sign Language Recognition Using a Hybrid Deep Learning Model
    Noor, Talal H.
    Noor, Ayman
    Alharbi, Ahmed F.
    Faisal, Ahmed
    Alrashidi, Rakan
    Alsaedi, Ahmed S.
    Alharbi, Ghada
    Alsanoosy, Tawfeeq
    Alsaeedi, Abdullah
    SENSORS, 2024, 24 (11)
  • [24] Real-Time Traffic Sign Recognition Using Deep Learning
    Shivayogi, Ananya Belagodu
    Dharmendra, Nehal Chakravarthy Matasagara
    Ramakrishna, Anala Maddur
    Subramanya, Kolala Nagaraju
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (01): : 137 - 148
  • [25] Real-Time Emotion Recognition Using Deep Learning Algorithms
    El Mettiti, Abderrahmane
    Oumsis, Mohammed
    Chehri, Abdellah
    Saadane, Rachid
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [26] Joint probabilistic approach for real-time face recognition with transfer learning
    Tay, Noel Nuo Wi
    Botzheim, Janos
    Kubota, Naoyuki
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 409 - 421
  • [27] An Efficient and Effective Deep Learning-Based Model for Real-Time Face Mask Detection
    Habib, Shabana
    Alsanea, Majed
    Aloraini, Mohammed
    Al-Rawashdeh, Hazim Saleh
    Islam, Muhammad
    Khan, Sheroz
    SENSORS, 2022, 22 (07)
  • [28] Deep Learning Feature Extraction Architectures for Real-Time Face Detection
    Ravi Teja B.
    Mythili D.
    Duvva L.
    Bethu S.
    Garapati Y.
    SN Computer Science, 4 (5)
  • [29] Real-time model calibration with deep reinforcement learning
    Tian, Yuan
    Chao, Manuel Arias
    Kulkarni, Chetan
    Goebel, Kai
    Fink, Olga
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [30] A Conceptual Deep Learning Model for Real-Time Routing
    Ikidid, Abdelouafi
    El Fazziki, Abdelaziz
    Sadgal, Mohammed
    El Ghazouani, Mohamed
    Ichahane, My Youssef
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 453 - 456