Boron-modified CuO as catalyst for electroreduction of CO2 towards C2+products

被引:5
|
作者
Li, Zhiqian [1 ]
Yang, Xue [2 ]
Fang, Qi [1 ]
Cheng, Tao [2 ]
Zhang, Zining [1 ]
Zhang, Hongjuan [1 ]
Tang, Jing [1 ,3 ,4 ]
机构
[1] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200062, Peoples R China
[2] Sinopec Res Inst Petr Proc Co LTD, Beijing 100083, Peoples R China
[3] Sinopec Res Inst Petr Proc Co LTD, State Key Lab Petr Mol & Proc Engn, SKLPMPE, Beijing 100083, Peoples R China
[4] East China Normal Univ, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroreduction of carbon dioxide; Boron-doping; CuO nanosheets;
D O I
10.1016/j.apsusc.2023.158919
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development for electroreduction of carbon dioxide (CO2) is crucial for achieving sustainable cycles and carbon neutrality. Electroreduction of CO2 to C2+ products can not only mitigate environmental issues by reducing CO2 but also provide high-value chemicals for modern industry. In this study, we synthesized CuO nanosheets (CuO NS) via simple hydrothermal method and modified its electron structure by in-situ boron (B) doping to produce B-CuO NS catalyst. The XPS spectra revealed the successfully doping of B into CuO NS, which obviously changes the electron density of Cu on the surface of CuO NS. As a result, B-CuO NS displayed a higher performance for electroreduction of CO2 compared with original CuO NS. The optimized B-CuO NS catalyst exhibits a faradaic efficiency of 54.78 % for C2+ production at-1.2 V vs. reversible hydrogen electrode (RHE). Based on the structural characterization and Density Functional Theory (DFT) calculations, the introduction of B increases the charge density of Cu, which could process free electrons to adsorb *CO. Thanks to the easier adsorbing of *CO on B-CuO NS as well as the lower adsorption energy of *CO on Cu, C-C coupling reaction was promoted to produce more C2+ products. This work shows a rational design strategy for developing efficient catalysts for electroreduction of CO2.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Preparation of Cu2O modified materials and electroreduction of CO2 to C2+ products
    Yang, Chaoran
    Zhao, Shixi
    Zhang, Tianyu
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (03): : 320 - 323
  • [22] Plasma-Modified Dendritic Cu Catalyst for CO2 Electroreduction
    Scholten, Fabian
    Sinev, Ilya
    Bernal, Miguel
    Roldan Cuenya, Beatriz
    ACS CATALYSIS, 2019, 9 (06): : 5496 - +
  • [23] Machine learning assisted binary alloy catalyst design for the electroreduction of CO2 to C2 products
    Gariepy, Zachary
    Chen, Guiyi
    Xu, Anni
    Lu, Zhuole
    Chen, Zhi Wen
    Singh, Chandra Veer
    ENERGY ADVANCES, 2023, 2 (03): : 410 - 419
  • [24] Polydopamine Coating of a Metal-Organic Framework with Bi-Copper Sites for Highly Selective Electroreduction of CO2 to C2+Products
    Zhao, Zhen-Hua
    Zhu, Hao-Lin
    Huang, Jia-Run
    Liao, Pei-Qin
    Chen, Xiao-Ming
    ACS CATALYSIS, 2022, 12 (13) : 7986 - 7993
  • [25] Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products
    Wang, Xiqing
    Chen, Qin
    Zhou, Yajiao
    Tan, Yao
    Wang, Ye
    Li, Hongmei
    Chen, Yu
    Sayed, Mahmoud
    Geioushy, Ramadan A.
    Allam, Nageh K.
    Fu, Junwei
    Sun, Yifei
    Liu, Min
    NANO RESEARCH, 2024, 17 (03) : 1101 - 1106
  • [26] Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products
    Xiqing Wang
    Qin Chen
    Yajiao Zhou
    Yao Tan
    Ye Wang
    Hongmei Li
    Yu Chen
    Mahmoud Sayed
    Ramadan A. Geioushy
    Nageh K. Allam
    Junwei Fu
    Yifei Sun
    Min Liu
    Nano Research, 2024, 17 : 1101 - 1106
  • [27] CO2 Electroreduction to Multicarbon Products
    Mandal, Mrinmay
    CHEMELECTROCHEM, 2020, 7 (18): : 3713 - 3715
  • [28] Synergistically boosting CO2 electroreduction to ethylene by CeO2-modified CuO nanorods
    Yu, Q.I.
    Zhang, Jin-Nan
    Xiao, Yuan-Yuan
    Zhang, Chi
    Wang, Hong-Tao
    Guo, Tian-Yu
    Zhongguo Huanjing Kexue/China Environmental Science, 2024, 44 (07): : 3655 - 3661
  • [29] Highly stability Cu plus species in hollow Cu2O nanoreactors by modulating cavity size for CO2 electroreduction to C2+products
    Zhang, Rui
    Chen, Feifei
    Jin, Haokun
    Zhang, Yong
    Hao, Xiaoya
    Liu, Yingda
    Feng, Tianming
    Zhang, Xinghua
    Lu, Zunming
    Wang, Weihua
    Lu, Feng
    Dong, Hong
    Liu, Hui
    Cheng, Yahui
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [30] Enhancing *CO intermediate coverage on the CuAlOx catalyst for the CO2 electroreduction to multicarbon products
    Zhang, Zhitong
    Chen, Rongzhen
    Zhang, Wenxuan
    Li, Yuhang
    Li, Chunzhong
    CHEMICAL ENGINEERING SCIENCE, 2025, 306