Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences

被引:2
|
作者
Zhou, Ya'nan [1 ]
Wang, Yan [1 ]
Yan, Na'na [2 ]
Feng, Li [1 ]
Chen, Yuehong [1 ]
Wu, Tianjun [3 ]
Gao, Jianwei [4 ]
Zhang, Xiwang [5 ]
Zhu, Weiwei [2 ]
机构
[1] Hohai Univ, Coll Geog & Remote Sensing, Nanjing 211100, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[3] Changan Univ, Sch Sci, Xian 710064, Peoples R China
[4] China Acad Space Technol, Inst Spacecraft Applicat Syst Engn, Beijing 100081, Peoples R China
[5] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow R, Minist Educ, Kaifeng 475004, Peoples R China
关键词
crop mapping; feature representation; contrastive learning; incomplete time series; Sentinel-2; image; RED-EDGE; CLASSIFICATION; WHEAT; BANDS;
D O I
10.3390/rs15205009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Parcel-based crop classification using multi-temporal satellite optical images plays a vital role in precision agriculture. However, optical image sequences may be incomplete due to the occlusion of clouds and shadows. Thus, exploring inherent time-series features to identify crop types from incomplete optical image sequences is a significant challenge. This study developed a contrastive-learning-based framework for time-series feature representation to improve crop classification using incomplete Sentinel-2 image sequences. Central to this method was the combined use of inherent time-series feature representation and machine-learning-based classifications. First, preprocessed multi-temporal Sentinel-2 satellite images were overlaid onto precise farmland parcel maps to generate raw time-series spectral features (with missing values) for each parcel. Second, an enhanced contrastive learning model was established to map the raw time-series spectral features to their inherent feature representation (without missing values). Thirdly, eXtreme Gradient-Boosting-based and Long Short-Term Memory-based classifiers were applied to feature representation to produce crop classification maps. The proposed method is further discussed and validated through parcel-based time-series crop classifications in two study areas (one in Dijon of France and the other in Zhaosu of China) with multi-temporal Sentinel-2 images in comparison to the existing methods. The classification results, demonstrating significant improvements greater than 3% in overall accuracy and 0.04 in F1 scores over comparison methods, indicate the effectiveness of the proposed contrastive-learning-based time-series feature representation for parcel-based crop classification utilizing incomplete Sentinel-2 image sequences.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany
    Blickensdoerfer, Lukas
    Schwieder, Marcel
    Pflugmacher, Dirk
    Nendel, Claas
    Erasmi, Stefan
    Hostert, Patrick
    REMOTE SENSING OF ENVIRONMENT, 2022, 269
  • [22] GARLIC MAPPING FOR SENTINEL-2 TIME-SERIES DATA USING A RANDOM FOREST CLASSIFIER
    Chai, Zhaoyang
    Zhang, Hongyan
    Xu, Xiong
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7224 - 7227
  • [23] Hierarchical classification for improving parcel-scale crop mapping using time-series Sentinel-1 data
    Zhou, Ya'nan
    Zhu, Weiwei
    Li, Feng
    Gao, Jianwei
    Chen, Yuehong
    Xin, Zhang
    Luo, Jiancheng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369
  • [24] Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series Sentinel-2 Imagery
    Khan, Haseeb Rehman
    Gillani, Zeeshan
    Jamal, Muhammad Hasan
    Athar, Atifa
    Chaudhry, Muhammad Tayyab
    Chao, Haoyu
    He, Yong
    Chen, Ming
    SENSORS, 2023, 23 (04)
  • [25] Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning
    Luo, Ke
    Lu, Linlin
    Xie, Yanhua
    Chen, Fang
    Yin, Fang
    Li, Qingting
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
  • [26] Mapping Seasonal Agricultural Land Use Types Using Deep Learning on Sentinel-2 Image Time Series
    Debella-Gilo, Misganu
    Gjertsen, Arnt Kristian
    REMOTE SENSING, 2021, 13 (02) : 1 - 17
  • [27] FEW SHOT CROP MAPPING USING TRANSFORMERS AND TRANSFER LEARNING WITH SENTINEL-2 TIME SERIES: CASE OF KAIROUAN TUNISIA
    Keraani, Mohamed Karim
    Mansour, Khalil
    Khlaifia, Bilel
    Chehata, Nesrine
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 899 - 906
  • [28] Mapping Integrated Crop-Livestock Systems Using Fused Sentinel-2 and PlanetScope Time Series and Deep Learning
    Werner, Joao P. S.
    Belgiu, Mariana
    Bueno, Inacio T.
    Dos Reis, Aliny A.
    Toro, Ana P. S. G. D.
    Antunes, Joao F. G.
    Stein, Alfred
    Lamparelli, Rubens A. C.
    Magalhaes, Paulo S. G.
    Coutinho, Alexandre C.
    Esquerdo, Julio C. D. M.
    Figueiredo, Gleyce K. D. A.
    REMOTE SENSING, 2024, 16 (08)
  • [29] A temporal-spatial deep learning network for winter wheat mapping using time-series Sentinel-2 imagery
    Fan, Lingling
    Xia, Lang
    Yang, Jing
    Sun, Xiao
    Wu, Shangrong
    Qiu, Bingwen
    Chen, Jin
    Wu, Wenbin
    Yang, Peng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 214 : 48 - 64
  • [30] Short-time-series grassland mapping using Sentinel-2 imagery and deep learning-based architecture
    Abdollahi, Abolfazl
    Liu, Yuxia
    Pradhan, Biswajeet
    Huete, Alfredo
    Dikshit, Abhirup
    Ngoc Nguyen Tran
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2022, 25 (03): : 673 - 685