In Situ Electron Microscopy of Transformations of Copper Nanoparticles under Plasmonic Excitation

被引:6
|
作者
Alcorn, Francis M. [1 ,2 ]
van der Veen, Renske M. [1 ,2 ,3 ]
Jain, Prashant K. [1 ,2 ,4 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
TEM; hollow nanostructures; nanoscaleKirkendalleffect; operando measurements; diffusion; LSPR; INDUCED STRUCTURAL EVOLUTION; HOLLOW NANOCRYSTALS; GALVANIC EXCHANGE; SINGLE-MOLECULE; AMORPHOUS FE; OXIDATION; SPECTROSCOPY; DYNAMICS; CO; IRRADIATION;
D O I
10.1021/acs.nanolett.3c01474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal nanoparticles are attractinginterest for their light-absorptionproperties, but such materials are known to dynamically evolve underthe action of chemical and physical perturbations, resulting in changesin their structure and composition. Using a transmission electronmicroscope equipped for optical excitation of the specimen, the structuralevolution of Cu-based nanoparticles under simultaneous electron beamirradiation and plasmonic excitation was investigated with high spatiotemporalresolution. These nanoparticles initially have a Cu core-Cu2O oxide shell structure, but over the course of imaging, theyundergo hollowing via the nanoscale Kirkendall effect. We capturedthe nucleation of a void within the core, which then rapidly growsalong specific crystallographic directions until the core is hollowedout. Hollowing is triggered by electron-beam irradiation; plasmonicexcitation enhances the kinetics of the transformation likely by theeffect of photothermal heating.
引用
收藏
页码:6520 / 6527
页数:8
相关论文
共 50 条
  • [21] Anomalous desorption of copper oxide observed by in situ transmission electron microscopy
    Yang, JC
    Yeadon, M
    Olynick, D
    Gibson, JM
    MICROSCOPY AND MICROANALYSIS, 1997, 3 (02) : 121 - 125
  • [22] Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles
    Youngsoo Kim
    Jeremy G. Smith
    Prashant K. Jain
    Nature Chemistry, 2018, 10 : 763 - 769
  • [23] Erratum: Photochemical transformations on plasmonic metal nanoparticles
    Suljo Linic
    Umar Aslam
    Calvin Boerigter
    Matthew Morabito
    Nature Materials, 2015, 14 (7) : 744 - 744
  • [24] In-situ transmission electron microscopy and theoretical studies on the coalescence of nanoparticles
    Theissmann, Ralf
    Schierning, Gabi P.
    Fendrich, Martin
    Zinetullin, Rouslan
    Wolf, Dietrich E.
    Meyer, Ralf
    Guenther, Gerrit
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C147 - C147
  • [25] Photoemission electron microscopy of plasmonic nanostructures
    Hess, Wayne P.
    Peppernick, Samuel J.
    Beck, Kenneth M.
    Joly, Alan G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [26] Electron microscopy and spectroscopy of plasmonic alloys
    Ringe, Emilie
    Collins, Sean
    DeSantis, Christopher
    Skrabalak, Sara
    Midgley, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [27] Stress-induced phase transformations studied by in-situ transmission electron microscopy
    No, M. L.
    Ibarra, A.
    Caillard, D.
    San Juan, J.
    15TH INTERNATIONAL CONFERENCE ON THE STRENGTH OF MATERIALS (ICSMA-15), 2010, 240
  • [28] Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity
    Guangjun Cheng
    A. R. Hight Walker
    Analytical and Bioanalytical Chemistry, 2010, 396 : 1057 - 1069
  • [29] Labeling polymeric nanoparticles with copper chlorophyll as contrast agent for electron microscopy
    Sun, Wangqiang
    Xie, Changsheng
    Wang, Huafang
    Hu, Yu
    Yang, Xiangliang
    Xu, Huibi
    CHEMISTRY LETTERS, 2006, 35 (04) : 378 - 379
  • [30] Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity
    Cheng, Guangjun
    Walker, A. R. Hight
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (03) : 1057 - 1069