Counting Vertices of Integral Polytopes Defined by Facets

被引:0
|
作者
Guo, Heng [1 ]
Jerrum, Mark [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
[2] Queen Mary Univ London, Sch Math Sci, London, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
0; 1; polytopes; Approximation algorithms; Computational complexity of counting; Totally unimodular matrices; COMPLEXITY; DECOMPOSITION; MATRIX;
D O I
10.1007/s00454-022-00406-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a number of complexity results concerning the problem of counting vertices of an integral polytope defined by a system of linear inequalities. The focus is on polytopes with small integer vertices, particularly 0/1 polytopes and half-integral polytopes.
引用
收藏
页码:975 / 990
页数:16
相关论文
共 50 条
  • [41] Facets and volume of Gorenstein Fano polytopes
    Hibi, Takayuki
    Tsuchiya, Akiyoshi
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (16) : 2619 - 2628
  • [42] APPROXIMATIONS BY POLYTOPES WITH PROJECTIVELY REGULAR FACETS
    SHEPHARD, GC
    MATHEMATIKA, 1966, 13 (26P2) : 189 - &
  • [43] On approximation by projections of polytopes with few facets
    Alexander E. Litvak
    Mark Rudelson
    Nicole Tomczak-Jaegermann
    Israel Journal of Mathematics, 2014, 203 : 141 - 160
  • [44] LAGRANGEAN DECOMPOSITION AND FACETS OF INTEGER POLYTOPES
    GUIGNARD, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (06): : 225 - 230
  • [45] Facets of linear signed order polytopes
    Fiorini, S
    Fishburn, P
    DISCRETE APPLIED MATHEMATICS, 2003, 131 (03) : 597 - 610
  • [46] The Duality of the Volumes and the Numbers of Vertices of Random Polytopes
    Buchta, Christian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (03) : 951 - 959
  • [47] Correction to: Distance between vertices of lattice polytopes
    Anna Deza
    Antoine Deza
    Zhongyan Guan
    Lionel Pournin
    Carlos Aníbal Suárez
    Optimization Letters, 2020, 14 : 327 - 328
  • [48] Covering functionals of convex polytopes with few vertices
    Li, Xia
    Meng, Lingxu
    Wu, Senlin
    ARCHIV DER MATHEMATIK, 2022, 119 (02) : 135 - 146
  • [49] Random polytopes with vertices on the boundary of a convex body
    Schütt, C
    Werner, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (09): : 697 - 701
  • [50] The Duality of the Volumes and the Numbers of Vertices of Random Polytopes
    Christian Buchta
    Discrete & Computational Geometry, 2023, 70 : 951 - 959