Counting Vertices of Integral Polytopes Defined by Facets

被引:0
|
作者
Guo, Heng [1 ]
Jerrum, Mark [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
[2] Queen Mary Univ London, Sch Math Sci, London, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
0; 1; polytopes; Approximation algorithms; Computational complexity of counting; Totally unimodular matrices; COMPLEXITY; DECOMPOSITION; MATRIX;
D O I
10.1007/s00454-022-00406-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a number of complexity results concerning the problem of counting vertices of an integral polytope defined by a system of linear inequalities. The focus is on polytopes with small integer vertices, particularly 0/1 polytopes and half-integral polytopes.
引用
收藏
页码:975 / 990
页数:16
相关论文
共 50 条
  • [1] Counting Vertices of Integral Polytopes Defined by Facets
    Heng Guo
    Mark Jerrum
    Discrete & Computational Geometry, 2023, 70 : 975 - 990
  • [2] Polytopes with few vertices and few facets
    Padrol, Arnau
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 142 : 177 - 180
  • [4] On Vertices and Facets of Combinatorial 2-Level Polytopes
    Aprile, Manuel
    Cevallos, Alfonso
    Faenza, Yuri
    COMBINATORIAL OPTIMIZATION, ISCO 2016, 2016, 9849 : 177 - 188
  • [5] Counting vertices in Gelfand-Zetlin polytopes
    Gusev, Pavel
    Kiritchenko, Valentina
    Timorin, Vladlen
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (04) : 960 - 969
  • [6] Counting d-polytopes with d+3 vertices
    Fusy, E
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [7] Maximal Number of Vertices of Polytopes Defined by F-Probabilities
    Wallner, Anton
    ISIPTA 05-PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES AND THEIR APPLICATIONS, 2005, : 388 - 395
  • [8] POLYTOPES FIXED BY THEIR VERTICES
    MANI, P
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 22 (3-4): : 269 - &
  • [9] Vertices of FFLV polytopes
    Feigin, Evgeny
    Makhlin, Igor
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 45 (04) : 1083 - 1110
  • [10] Vertices of FFLV polytopes
    Evgeny Feigin
    Igor Makhlin
    Journal of Algebraic Combinatorics, 2017, 45 : 1083 - 1110