Software Defect Prediction Method Based on Stable Learning

被引:0
|
作者
Fan, Xi [1 ,2 ,3 ]
Mao, Jingen [2 ,3 ]
Lian, Liangjue [2 ,3 ]
Yu, Li [1 ]
Zheng, We [2 ,3 ]
Ge, Yun [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210012, Peoples R China
[2] Nanchang Hangkong Univ, Sch Software, Nanchang 330029, Peoples R China
[3] Nanchang Hangkong Univ, Software Testing & Evaluat Ctr, Nanchang 330029, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 78卷 / 01期
基金
中国国家自然科学基金;
关键词
Software defect prediction; code visualization; stable learning; sample reweight; residual network; VISUALIZATION;
D O I
10.32604/cmc.2023.045522
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor. In previous software defect prediction studies, transfer learning was effective in solving the problem of inconsistent project data distribution. However, target projects often lack sufficient data, which affects the performance of the transfer learning model. In addition, the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model. To address these problems, this article propose a software defect prediction method based on stable learning (SDP-SL) that combines code visualization techniques and residual networks. This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images. During the model training process, target project data are not required as prior knowledge. Following the principles of stable learning, this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features, thereby capturing the "invariance mechanism" within the data. This approach explores the genuine relationship between code defect features and labels, thereby enhancing defect prediction performance. To evaluate the performance of SDP-SL, this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset. The experimental results demonstrated that in terms of the F-measure, the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%. In cross-project defect prediction, the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods. Therefore, SDP-SL can effectively enhance within- and cross-project defect predictions.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 50 条
  • [31] A Regression Analysis Based Model for Defect Learning and Prediction in Software Development
    Memon, Mashooque Ahmed
    Baloch, Mujeeb-ur-Rehman Maree
    Memon, Muniba
    Musavi, Syed Hyder Abbas
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2021, 40 (03) : 617 - 629
  • [32] bjCnet: A contrastive learning-based framework for software defect prediction
    Han, Jiaxuan
    Huang, Cheng
    Liu, Jiayong
    COMPUTERS & SECURITY, 2024, 145
  • [33] Feature Clustering and Ensemble Learning Based Approach for Software Defect Prediction
    Srivastava R.
    Jain A.K.
    Recent Advances in Computer Science and Communications, 2022, 15 (06): : 868 - 882
  • [34] Software Defect Prediction Based on Fuzzy Cost Broad Learning System
    Cao, Heling
    Cui, Zhiying
    Chu, Yonghe
    Gong, Lina
    Liu, Guangen
    Wang, Yun
    Tian, Fangchao
    Li, Peng
    Ge, Haoyang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [35] A Model Based on Program Slice and Deep Learning for Software Defect Prediction
    Tian, Junfeng
    Tian, Yongqing
    2020 29TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2020), 2020,
  • [36] Software Defect Prediction by Online Learning Considering Defect Overlooking
    Yamasaki, Yuta
    Fedorov, Nikolay
    Tsunoda, Masateru
    Monden, Akito
    Tahir, Amjed
    Bennin, Kwabena Ebo
    Toda, Koji
    Nakasai, Keitaro
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS, ISSREW, 2023, : 43 - 44
  • [37] On Software Defect Prediction Using Machine Learning
    Ren, Jinsheng
    Qin, Ke
    Ma, Ying
    Luo, Guangchun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [38] On the use of deep learning in software defect prediction
    Giray, Gorkem
    Bennin, Kwabena Ebo
    Koksal, Omer
    Babur, Onder
    Tekinerdogan, Bedir
    JOURNAL OF SYSTEMS AND SOFTWARE, 2023, 195
  • [39] Software Defect Prediction using Deep Learning
    Nevendra, Meetesh
    Singh, Pradeep
    ACTA POLYTECHNICA HUNGARICA, 2021, 18 (10) : 173 - 189
  • [40] Deep Learning for Software Defect Prediction in time
    Yadav, Monika
    Singh, Vijendra
    Rastogi, Priyanka
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 7 - 12