Software Defect Prediction Method Based on Stable Learning

被引:0
|
作者
Fan, Xi [1 ,2 ,3 ]
Mao, Jingen [2 ,3 ]
Lian, Liangjue [2 ,3 ]
Yu, Li [1 ]
Zheng, We [2 ,3 ]
Ge, Yun [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210012, Peoples R China
[2] Nanchang Hangkong Univ, Sch Software, Nanchang 330029, Peoples R China
[3] Nanchang Hangkong Univ, Software Testing & Evaluat Ctr, Nanchang 330029, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 78卷 / 01期
基金
中国国家自然科学基金;
关键词
Software defect prediction; code visualization; stable learning; sample reweight; residual network; VISUALIZATION;
D O I
10.32604/cmc.2023.045522
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor. In previous software defect prediction studies, transfer learning was effective in solving the problem of inconsistent project data distribution. However, target projects often lack sufficient data, which affects the performance of the transfer learning model. In addition, the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model. To address these problems, this article propose a software defect prediction method based on stable learning (SDP-SL) that combines code visualization techniques and residual networks. This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images. During the model training process, target project data are not required as prior knowledge. Following the principles of stable learning, this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features, thereby capturing the "invariance mechanism" within the data. This approach explores the genuine relationship between code defect features and labels, thereby enhancing defect prediction performance. To evaluate the performance of SDP-SL, this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset. The experimental results demonstrated that in terms of the F-measure, the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%. In cross-project defect prediction, the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods. Therefore, SDP-SL can effectively enhance within- and cross-project defect predictions.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 50 条
  • [1] Software Defect Prediction Method Based on Clustering Ensemble Learning
    Tao, Hongwei
    Cao, Qiaoling
    Chen, Haoran
    Li, Yanting
    Niu, Xiaoxu
    Wang, Tao
    Geng, Zhenhao
    Shang, Songtao
    IET SOFTWARE, 2024, 2024
  • [2] Ensemble learning based software defect prediction
    Dong, Xin
    Liang, Yan
    Miyamoto, Shoichiro
    Yamaguchi, Shingo
    JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (04): : 377 - 391
  • [3] Software Defect Prediction Based on Fourier Learning
    Yang, Kang
    Yu, Huiqun
    Fan, Guisheng
    Yang, Xingguang
    Zheng, Song
    Leng, Chunxia
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 388 - 392
  • [4] Deep learning based software defect prediction
    Qiao, Lei
    Li, Xuesong
    Umer, Qasim
    Guo, Ping
    NEUROCOMPUTING, 2020, 385 : 100 - 110
  • [5] Dictionary Learning Based Software Defect Prediction
    Jing, Xiao-Yuan
    Ying, Shi
    Zhang, Zhi-Wu
    Wu, Shan-Shan
    Liu, Jin
    36TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2014), 2014, : 414 - 423
  • [6] A Survey of Software Defect Prediction Based on Deep Learning
    Meetesh Nevendra
    Pradeep Singh
    Archives of Computational Methods in Engineering, 2022, 29 : 5723 - 5748
  • [7] A Survey of Software Defect Prediction Based on Deep Learning
    Nevendra, Meetesh
    Singh, Pradeep
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (07) : 5723 - 5748
  • [8] Kernel Based Asymmetric Learning for Software Defect Prediction
    Ma, Ying
    Luo, Guangchun
    Chen, Hao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (01) : 267 - 270
  • [9] A software defect prediction method with metric compensation based on feature selection and transfer learning
    Chen, Jinfu
    Wang, Xiaoli
    Cai, Saihua
    Xu, Jiaping
    Chen, Jingyi
    Chen, Haibo
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (05) : 715 - 731
  • [10] Software Defect Prediction Method Based on Fuzzy Integral
    Liu, Wenying
    Chen, Chenxi
    Li, Kewen
    Wang, Peng
    Zhai, Jiannan
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2490 - 2493