Cu doping enhanced ZnIn2S4/TiO2(VO) Z-scheme heterojunction for efficient photocatalytic overall water splitting

被引:14
|
作者
He, Yijun [1 ]
Lv, Tianping [1 ]
Zhou, Tong [1 ]
Liu, Bo [1 ]
Xiao, Bin [1 ]
Zheng, Hongshun [2 ]
Zi, Baoye [1 ]
Zhang, Jin [1 ]
Zhang, Yumin [1 ]
Zhang, Genlin [1 ]
Liu, Qingju [1 ,2 ]
机构
[1] Yunnan Univ, Inst Int Rivers & Eco Secur, Sch Mat & Energy, Sch Ecol & Environm Sci,Yunnan Key Lab Micro Nano, Kunming 650091, Peoples R China
[2] Southwest United Grad Sch, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu doping; Z-Scheme heterojunction; Photocatalytic water splitting; TiO2; HYDROGEN EVOLUTION; DOPED ZNIN2S4; CARRIER SEPARATION; REDUCTION; SURFACE; NANOSHEETS; OXIDATION; ZNS; FE; CO;
D O I
10.1016/j.ijhydene.2024.01.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and synthesis of efficient photocatalysts for overall water splitting is a promising research topic. By reasonable modification, the hydrogen evolution photocatalyst can have the ability for overall water splitting. Both ZnIn2S4 and TiO2 have shown great potential in the field of photocatalytic hydrogen evolution, but their use for efficient overall water splitting is challenging. In this work, a Z-scheme heterojunction material of Cu-doped ZnIn2S4 composite TiO2 with rich oxygen vacancies was synthesized. Cu doping enhanced the light absorption, reduced the bandgap, and improved photocatalytic activity. In addition, the oxygen vacancies in TiO2 were conducive to the separation and migration of electron-hole pairs, and the construction of a Z-scheme heterojunction between ZnIn2S4 and TiO2 can also effectively promote the separation and migration of carriers. Therefore, the photocatalytic activity of this material was significantly improved and exhibited excellent overall water splitting activity without any sacrificial agents and co-catalysts. The optimized hydrogen and oxygen evolution rates were 589.64 mu mol/g/h and 292.75 mu mol/g/h, respectively. This work provided favorable evidence for metal element doping to promote the photocatalytic activity of composite heterojunction materials and provided a new strategy for the development of heterojunction photocatalysts for overall water splitting.
引用
收藏
页码:491 / 499
页数:9
相关论文
共 50 条
  • [21] Boosting Photocatalytic Overall Water Splitting on Direct Z-Scheme BiOBr/ZnIn2S4 Heterostructure by Atomic-Level Interfacial Charge Transport Modulation
    Yang, Yurong
    Sun, Zhengxin
    Liu, Chang
    Wang, Jiahui
    Qiu, Min
    Yan, Guomin
    Zhang, Kun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 15559 - 15565
  • [22] Construction of Bi2WO6/ZnIn2S4 with Z-scheme structure for efficient photocatalytic performance
    Bi, Hongfei
    Liu, Jinsong
    Wu, Zhengying
    Zhu, Kongjun
    Suo, He
    Lv, Xueliang
    Fu, Yunlong
    Jian, Ran
    Sun, Zhongbao
    CHEMICAL PHYSICS LETTERS, 2021, 769
  • [23] Synergistic effect of Cu doping and Z-scheme heterojunction on ZnIn2S4/ Cu-doped WO3.0.5H2O for boosting photocatalytic H2 evolution
    Zhou, Binhua
    Wang, Junqin
    Tan, Pengfei
    Yang, Lu
    Zhai, Huanhuan
    Zhang, Yi
    Zhang, Xiaoqing
    Huang, Hongjun
    Liu, Meihuan
    Pan, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 1221 - 1228
  • [24] Rational design of direct Z-scheme magnetic ZnIn2S4/ZnFe2O4 heterojunction toward enhanced photocatalytic wastewater remediation
    Gao, Qiang
    Wang, Zhi
    Li, Junxi
    Liu, Bin
    Liu, Chenguang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (06) : 16438 - 16448
  • [25] Rational design of direct Z-scheme magnetic ZnIn2S4/ZnFe2O4 heterojunction toward enhanced photocatalytic wastewater remediation
    Qiang Gao
    Zhi Wang
    Junxi Li
    Bin Liu
    Chenguang Liu
    Environmental Science and Pollution Research, 2023, 30 : 16438 - 16448
  • [26] Design and Preparation of ZnIn2S4/g-C3N4 Z-Scheme Heterojunction for Enhanced Photocatalytic CO2 Reduction
    Fang, Jinghong
    Wang, Min
    Yang, Xiaotong
    Sun, Qiong
    Yu, Liyan
    CATALYSTS, 2025, 15 (01)
  • [27] Efficient photocatalytic hydrogen evolution of Z-scheme BiVO4/ZnIn2S4 4 /ZnIn 2 S 4 heterostructure driven by visible light
    Li, Liyang
    Zhang, Zhengying
    Fang, Dong
    Yang, Di
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 169
  • [28] New insights into the enhancement of TiO2/ZnIn2S4 heterojunction via cerium doping
    Tu, Biyang
    Che, Ruijie
    Wang, Fenghe
    Li, Yafei
    Li, Jining
    Qiu, Jinli
    APPLIED SURFACE SCIENCE, 2023, 629
  • [29] An artificially constructed direct Z-scheme heterojunction: WO3 nanoparticle decorated ZnIn2S4 for efficient photocatalytic hydrogen production
    Wang, Yanze
    Chen, Da
    Hu, Yiqian
    Qin, Laishun
    Liang, Junhui
    Sun, Xingguo
    Huang, Yuexiang
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (04) : 1681 - 1692
  • [30] Facile Synthesis of a Z-Scheme ZnIn2S4/MoO3 Heterojunction with Enhanced Photocatalytic Activity under Visible Light Irradiation
    Khan, Azam
    Danish, Mohtaram
    Alam, Umair
    Zafar, Saad
    Muneer, Mohammad
    ACS OMEGA, 2020, 5 (14): : 8188 - 8199