Numerical Investigation of Diapycnal Mixing of the Kitikmeot Sea in the Southern Canadian Arctic Archipelago

被引:1
|
作者
Afsharipour, Yasaman [1 ]
Xu, Chengzhu [2 ]
Myers, Paul G. [3 ]
Else, Brent [4 ]
Zhou, Qi [1 ]
机构
[1] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[2] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR USA
[3] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada
[4] Univ Calgary, Dept Geog, Calgary, AB, Canada
关键词
numerical modelling; ocean mixing; Canadian Arctic Archipelago; Kitikmeot Sea; INTERNAL WAVES; STRATIFICATION; TURBULENCE; CURRENTS; SHALLOW; OCEANS; DEPTH; MODEL;
D O I
10.1080/07055900.2023.2294210
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Utilizing a $1/12<^>\circ$1/12 circle numerical model, we examine the diapycnal mixing patterns in the Kitikmeot Sea, a semi-enclosed water body within the southern Canadian Arctic Archipelago. The analysis reveals that mixing intensity near the sea surface varies seasonally, with effective diffusivity values ranging from $10<^>{-5}$10-5 to $10<^>{-3}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-3m2s-1, while away from the surface, the effective diffusivity remains relatively stable between $10<^>{-5}$10-5 and $10<^>{-4}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-4m2s-1. The seasonal fluctuations in surface mixing intensity are strongly influenced by ice coverage, which impacts both the stratification and the energy input to the surface driving the mixing process. Mixing energetics analysis indicates that the majority of energy contributing to the mixing processes are applied to the sea surface. During ice-free periods, wind-driven stirring dominates near-surface mixing with effective diffusivities of $10<^>{-5}$10-5 to $10<^>{-4}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-4m2s-1. Minimum near-surface effective diffusivity values occur in July and August, when the surface water is fresher and near-surface stratification is stronger due to spring freshet. Conversely, during ice-covered seasons, surface cooling and brine rejection primarily drive near-surface mixing, leading to effective diffusivities of $10<^>{-3}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-3m2s-1 or higher. In most cases, the observed mixing efficiency is within the range of what has been found in other regions of the Arctic Ocean. [Traduit par la rcedaction] En utilisant un modele numerique $1/12<^>\circ$1/12 circle, nous examinons les schemas de melange diapycniques dans la mer de Kitikmeot, une masse d'eau semi-fermee situee dans le sud de l'archipel Arctique canadien. L'analyse revele que l'intensite du melange pres de la surface de la mer varie selon les saisons, avec des valeurs de diffusivite effective allant de $10<^>{-5}$10-5 a $10<^>{-3}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-3m2s-1, tandis que loin de la surface, la diffusivite effective reste relativement stable entre $10<^>{-5}$10-5 et $10<^>{-4}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-4m2s-1. Les fluctuations saisonnieres de l'intensite du melange de surface sont fortement influencees par la couverture de glace, qui a une incidence a la fois sur la stratification et sur l'apport d'energie a la surface qui alimente le processus de melange. L'analyse energetique du melange indique que la majorite de l'energie contribuant aux processus de melange est appliquee a la surface de la mer. Pendant les periodes sans glace, l'agitation causee par le vent domine le melange pres de la surface avec des diffusivites effectives de $10<^>{-5}$10-5 a $10<^>{-4}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-4m2s-1. Les valeurs minimales de diffusivite effective pres de la surface se produisent en juillet et en aout, lorsque les eaux de surface sont plus fraiches et que la stratification pres de la surface est plus forte en raison de la crue printaniere. Inversement, pendant les saisons ou la glace est presente, le refroidissement de la surface et le rejet de saumure sont les principaux moteurs du melange pres de la surface, ce qui conduit a des diffusivites effectives de $10<^>{-3}\, {\rm m}<^>2\, {\rm s}<^>{-1}$10-3m2s-1 ou plus. Dans la plupart des cas, l'efficacite de melange observee se situe dans la fourchette de ce qui a ete trouve dans d'autres regions de l'ocean Arctique.
引用
收藏
页码:206 / 221
页数:16
相关论文
共 50 条
  • [31] Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992-2014)
    Kwok, Ron
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (18) : 7598 - 7605
  • [32] Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016-2022
    Howell, Stephen E. L.
    Babb, David G.
    Landy, Jack C.
    Glissenaar, Isolde A.
    McNeil, Kaitlin
    Montpetit, Benoit
    Brady, Mike
    CRYOSPHERE, 2024, 18 (05): : 2321 - 2333
  • [33] CURRENTS UNDER LAND-FAST ICE IN THE CANADIAN ARCTIC ARCHIPELAGO .2. VERTICAL MIXING
    MARSDEN, RF
    INGRAM, RG
    LEGENDRE, L
    JOURNAL OF MARINE RESEARCH, 1994, 52 (06) : 1037 - 1049
  • [34] Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago
    Gourdal, Margaux
    Lizotte, Martine
    Masse, Guillaume
    Gosselin, Michel
    Poulin, Michel
    Scarratt, Michael
    Charette, Joannie
    Levasseur, Maurice
    BIOGEOSCIENCES, 2018, 15 (10) : 3169 - 3188
  • [35] Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago
    Landy, Jack
    Ehn, Jens
    Shields, Megan
    Barber, David
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (05) : 3054 - 3075
  • [36] Regional characteristics of sea ice thickness in Canadian shelf and Arctic Archipelago measured by Ground Penetrating Radar
    Tao Li
    Jinping Zhao
    Yutian Jiao
    Jiaqiang Hou
    Longjiang Mu
    Acta Oceanologica Sinica, 2015, 34 : 110 - 116
  • [37] Absorption and fluorescence of dissolved organic matter in the waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea
    Gueguen, Celine
    Cuss, Chad W.
    Cassels, Chase J.
    Carmack, Eddy C.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (03) : 2034 - 2047
  • [38] Regional characteristics of sea ice thickness in Canadian shelf and Arctic Archipelago measured by Ground Penetrating Radar
    LI Tao
    ZHAO Jinping
    JIAO Yutian
    HOU Jiaqiang
    MU Longjiang
    Acta Oceanologica Sinica, 2015, 34 (05) : 110 - 116
  • [39] Application of a SeaWinds/QuikSCAT sea ice melt algorithm for assessing melt dynamics in the Canadian Arctic Archipelago
    Howell, Stephen E. L.
    Tivy, Adrienne
    Yackel, John J.
    Scharien, Randall K.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C7)
  • [40] Changing sea ice melt parameters in the Canadian Arctic Archipelago: Implications for the future presence of multiyear ice
    Howell, Stephen E. L.
    Tivy, Adrienne
    Yackel, John J.
    Else, Brent G. T.
    Duguay, Claude R.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C9)