Study on the durability of 3D printed calcium sulphoaluminate cement-based materials related to rheology control

被引:4
|
作者
Chen, Mingxu [1 ]
Jin, Yuan [2 ]
Sun, Keke [3 ]
Wang, Shoude [2 ]
Zhao, Piqi [2 ]
Wang, Liang [1 ]
Liu, Junzhe [1 ]
Yue, Gongbing [1 ]
Li, Qiuyi [1 ]
Lu, Lingchao [2 ]
机构
[1] Qingdao Agr Univ, Coll civil Engn & architecture, Qingdao 266109, Peoples R China
[2] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[3] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
Durability; 3D printing; Thixotropy; Rheological properties; Radar map; CONCRETE;
D O I
10.1016/j.jmrt.2023.08.076
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since 3D printed structure is conducted by the style of dimension reduction, the defects typically occur between the printing layers due to the poor rheological properties, which affects the durability most. This study focuses on exploring the durability of 3D printed calcium sulphoaluminate cement-based materials (CSACMs) with slag powder based on the correlation between printed structures and rheological parameters. Experimental results show that both the static and dynamic yield stress of 3D printed CSACMs exhibits a gradual increase with the slag powder content increases, while the thixotropy improves continually until reaching a maximum content at 15%. In this case, an increase in slag powder content leads to a significant reduction for structure deformation. However, poor printability occurs when the content of slag powder exceeds 15%. Besides, the chloride migration coefficient and maximum electric flux decreases from 7.28 x 10-12 to 3.27 x 10-12 m2/s and 1347 to 711 K, respectively, when the content of slag powder increases from 0 to 10%. Meanwhile, the freezing resistance and linear shrinkage are improved. Based on the radar map correlation, structure deformation is significantly influenced by thixotropy, which is a crucial factor that can impact the durability of 3D printed CSACMs. In conclusion, the controllable rheology of 3D printed CSACMs are advantageous for improving the printed structures and durability. (c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2481 / 2494
页数:14
相关论文
共 50 条
  • [21] High toughness 3D printed white Portland cement-based materials with glass fiber textile
    Jin, Yuan
    Zhou, Xiaolong
    Chen, Mingxu
    Zhao, Zhihui
    Huang, Yongbo
    Zhao, Piqi
    Lu, Lingchao
    Materials Letters, 2022, 309
  • [22] Study on bending performance of 3D printed PVA fiber reinforced cement-based material
    Luo, Surong
    Li, Wenqiang
    Wang, Dehui
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 433
  • [23] Rheology control towards 3D printed magnesium potassium phosphate cement composites
    Zhao, Zhihui
    Chen, Mingxu
    Jin, Yuan
    Lu, Lingchao
    Li, Laibo
    COMPOSITES PART B-ENGINEERING, 2022, 239
  • [24] Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing
    Shakor, Pshtiwan
    Sanjayan, Jay
    Nazari, Ali
    Nejadi, Shami
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 138 : 398 - 409
  • [25] 3D visualisation of pore structures in cement-based materials by LSCM
    Zhang, W. M.
    Sun, W.
    Chen, H. S.
    ADVANCES IN CEMENT RESEARCH, 2010, 22 (01) : 53 - 57
  • [26] 3D imaging techniques for characterising microcracks in cement-based materials
    Mac, M. J.
    Yio, M. H. N.
    Desbois, G.
    Casanova, I
    Wong, H. S.
    Buenfeld, N. R.
    CEMENT AND CONCRETE RESEARCH, 2021, 140
  • [27] Effect of fly ash on properties and hydration of calcium sulphoaluminate cement-based materials with high water content
    Gao, Meng
    Li, Mengying
    Wang, Jiahao
    Yang, Pengfei
    Xu, Mengge
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2024, 63 (01)
  • [28] Experimental study on dynamic mechanical properties of 3D printed cement-based materials under splitting tension after high temperature
    Sun, Houchao
    Li, Furong
    Shi, Feiting
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 19
  • [29] Study of the Interaction of Cement-Based Materials for 3D Printing with Fly Ash and Superabsorbent Polymers
    Melichar, Jindrich
    Zizkova, Nikol
    Brozovsky, Jiri
    Meszarosova, Lenka
    Hermann, Radek
    BUILDINGS, 2022, 12 (11)
  • [30] Characterisation of cement-based materials by 2D and 3D analytical SEM
    Rößler, Christiane
    Kleiner, Florian
    Matthes, Christian
    Hoffmann, Christopher
    Dieminger, Hanna
    Nguyen-Tuan, Long
    Kocis, Jackson
    Sowoidnich, Thomas
    Ludwig, Horst-Michael
    ce/papers, 2023, 6 (06) : 15 - 21