A Boltzmann Electron Drift Diffusion Model for Atmospheric Pressure Non-Thermal Plasma Simulations

被引:3
|
作者
Popoli, Arturo [1 ]
Ragazzi, Fabio [1 ]
Pierotti, Giacomo [1 ]
Neretti, Gabriele [1 ]
Cristofolini, Andrea [1 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn, I-40136 Bologna, Italy
关键词
numerical simulation; drift diffusion reaction; Boltzmann relation; Poisson-Boltzmann; dielectric barrier discharge (DBD); atmospheric pressure air; plasma kinetics; DIELECTRIC BARRIER DISCHARGE; HELIUM; TRANSPORT; SCHEME; STATE;
D O I
10.3390/plasma6030027
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a fluid computational model for the numerical simulation of atmospheric pressure dielectric barrier discharge plasmas. Ion and neutral species are treated with an explicit drift diffusion approach. The Boltzmann relation is used to compute the spatial distribution of electrons as a function of the electrostatic potential and the ionic charge density. This technique, widely used to speed up particle and fluid models for low-pressure conditions, poses several numerical challenges for high-pressure conditions and large electric field values typical of applications involving atmospheric-pressure plasmas. We develop a robust algorithm to solve the non-linear electrostatic Poisson problem arising from the Boltzmann electron approach under AC electric fields based on a charge-conserving iterative computation of the reference electric potential and electron density. We simulate a volumetric reactor in dry air, comparing the results yielded by the proposed method with those obtained when the drift diffusion approach is used for all charged species, including electrons. We show that the proposed methodology retains most of the physical information provided by the reference modeling approach while granting a substantial advantage in terms of computation time.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 50 条
  • [21] Plasma Propagation Speed and Electron Temperature in Slow Electron Energy Non-thermal Atmospheric Pressure Indirect-Plasma Jet
    Suanpoot, Pradoong
    Han, Gook-Hee
    Sornsakdanuphap, Jirapong
    Uhm, Han Sup
    Cho, Guangsup
    Choi, Eun Ha
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (07) : 2207 - 2211
  • [22] Measurement of electrical characteristics of atmospheric pressure non-thermal He plasma
    Anghel, S. D.
    Simon, A.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (08) : 2642 - 2648
  • [23] Decomposition of formaldehyde in strong ionization non-thermal plasma at atmospheric pressure
    P. J. Asilevi
    C. W. Yi
    J. Li
    M. I. Nawaz
    H. J. Wang
    L. Yin
    Z. Junli
    International Journal of Environmental Science and Technology, 2020, 17 : 765 - 776
  • [24] A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma
    Yuchen Zhang
    Yu Li
    Yinglong Li
    Shuang Yu
    Haiyan Li
    Jue Zhang
    The European Physical Journal Special Topics, 2017, 226 : 2901 - 2910
  • [25] Characterization of the Operational Modes of a Non-thermal Atmospheric Pressure Plasma Jet
    Demetillo, Mary Angelique
    Lopez, Jose L.
    2017 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2017,
  • [26] Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells
    Tomasz Czapka
    Irena Maliszewska
    Joanna Olesiak-Bańska
    Plasma Chemistry and Plasma Processing, 2018, 38 : 1181 - 1197
  • [27] Oxidation of elemental mercury using atmospheric pressure non-thermal plasma
    Byun, Youngchul
    Ko, Kyung Bo
    Cho, Moohyun
    Namkung, Won
    Shin, Dong Nam
    Lee, Jin Wook
    Koh, Dong Jun
    Kim, Kyoung Tae
    CHEMOSPHERE, 2008, 72 (04) : 652 - 658
  • [28] Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells
    Czapka, Tomasz
    Maliszewska, Irena
    Olesiak-Banska, Joanna
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2018, 38 (06) : 1181 - 1197
  • [29] Growth factors and cytokines are regulated by non-thermal atmospheric pressure plasma
    Barton, A.
    Hasse, S.
    Bundscherer, L.
    Wende, K.
    Weltmann, K.
    Lindequist, U.
    Masur, K.
    EXPERIMENTAL DERMATOLOGY, 2014, 23 (03) : E7 - E7
  • [30] The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast
    Kwon, Jae-Sung
    Kim, Yong Hee
    Choi, Eun Ha
    Kim, Kyoung-Nam
    CURRENT APPLIED PHYSICS, 2013, 13 : S42 - S47