Tensor rank bounds and explicit QTT representations for the inverses of circulant matrices

被引:3
|
作者
Vysotsky, Lev [1 ,2 ]
Rakhuba, Maxim [1 ]
机构
[1] HSE Univ, Dept CS, Moscow, Russia
[2] Russian Acad Sci, Marchuk Inst Numer Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
circulant matrices; QTT; robust solver; APPROXIMATION;
D O I
10.1002/nla.2461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the inversion of circulant matrices and their quantized tensor-train (QTT) structure. In particular, we show that the inverse of a complex circulant matrix A, generated by the first column of the form (a(0), ... ,a(m-1),0, ... ,0,a-n, ... ,a-1)T admits a QTT representation with the QTT ranks bounded by (m+n). Under certain assumptions on the entries of A, we also derive an explicit QTT representation of A(-1). The latter can be used, for instance, to overcome stability issues arising when numerically solving differential equations with periodic boundary conditions in the QTT format.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] RANK CONDITIONS FOR GENERALIZED INVERSES OF PARTITIONED MATRICES
    MARSAGLIA, G
    STYAN, GPH
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1974, 36 (OCT): : 437 - 442
  • [42] Tensor-train ranks for matrices and their inverses
    Oseledets, Ivan
    Tyrtyshnikov, Eugene
    Zamarashkin, Nickolai
    Computational Methods in Applied Mathematics, 2011, 11 (03) : 394 - 403
  • [43] LOW-RANK EXPLICIT QTT REPRESENTATION OF THE LAPLACE OPERATOR AND ITS INVERSE
    Kazeev, Vladimir A.
    Khoromskij, Boris N.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (03) : 742 - 758
  • [44] Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers
    Bozkurt, Durmus
    Tam, Tin-Yau
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 544 - 551
  • [45] Exact determinants and inverses of generalized Lucas skew circulant type matrices
    Zheng, Yanpeng
    Shon, Sugoog
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 105 - 113
  • [46] Determinants and inverses of r-circulant matrices associated with a number sequence
    Bozkurt, Durmus
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10): : 2079 - 2088
  • [47] Explicit rank bounds for cyclic covers
    DeBlois, Jason
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (03): : 1343 - 1371
  • [48] An analytical approach: Explicit inverses of periodic tridiagonal matrices
    Hopkins, Tim
    Kilic, Emrah
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 335 : 207 - 226
  • [49] Rank structure of generalized inverses of rectangular banded matrices*
    R. Bevilacqua
    E. Bozzo
    G. M. Del Corso
    D. Fasino
    CALCOLO, 2005, 42 : 157 - 169
  • [50] Bounds for the inverses of PM- and PH-matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2010, 165 (5) : 537 - 555