Tensor rank bounds and explicit QTT representations for the inverses of circulant matrices

被引:3
|
作者
Vysotsky, Lev [1 ,2 ]
Rakhuba, Maxim [1 ]
机构
[1] HSE Univ, Dept CS, Moscow, Russia
[2] Russian Acad Sci, Marchuk Inst Numer Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
circulant matrices; QTT; robust solver; APPROXIMATION;
D O I
10.1002/nla.2461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the inversion of circulant matrices and their quantized tensor-train (QTT) structure. In particular, we show that the inverse of a complex circulant matrix A, generated by the first column of the form (a(0), ... ,a(m-1),0, ... ,0,a-n, ... ,a-1)T admits a QTT representation with the QTT ranks bounded by (m+n). Under certain assumptions on the entries of A, we also derive an explicit QTT representation of A(-1). The latter can be used, for instance, to overcome stability issues arising when numerically solving differential equations with periodic boundary conditions in the QTT format.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Explicit inverses of generalized Tribonacci circulant type matrices
    Shen, Shouqiang
    Liu, Weijun
    Feng, Lihua
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (03): : 689 - 699
  • [2] THE EXPLICIT REPRESENTATIONS OF THE DRAZIN INVERSES OF A CLASS OF BLOCK MATRICES
    Bu, Changjiang
    Zhang, Kuize
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 406 - 418
  • [3] GENERALIZED INVERSES OF CIRCULANT AND GENERALIZED CIRCULANT MATRICES
    BELL, CL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 39 (AUG) : 133 - 142
  • [4] The inverses of some circulant matrices
    Carmona, A.
    Encinas, A. M.
    Gago, S.
    Jimenez, M. J.
    Mitjana, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 785 - 793
  • [5] The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers
    Jiang, Zhaolin
    Li, Dan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] INVERTIBILITY AND EXPLICIT INVERSES OF SKEW CIRCULANT MATRICES INVOLVING THE SUM OF PELL AND PELL-LUCAS NUMBERS
    Wei, Yunlan
    Zheng, Yanpeng
    Jiang, Zhaolin
    Shon, Sugoog
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 22 (02): : 243 - 253
  • [7] Algorithms for Finding the Inverses of Factor Block Circulant Matrices
    Zhaolin Jiang
    Zongben Xu and Shuping Gao 1 School of Science
    Numerical Mathematics A Journal of Chinese Universities(English Series), 2006, (01) : 1 - 11
  • [8] Explicit Inverses Of Several Tridiagonal Matrices
    Yueh, Wen-Chyuan
    APPLIED MATHEMATICS E-NOTES, 2006, 6 : 74 - 83
  • [9] Estimating the norms of random circulant and Toeplitz matrices and their inverses
    Pan, Victor Y.
    Svadlenka, John
    Zhao, Liang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 : 197 - 210
  • [10] Bounds on the tensor rank
    Ballico, Edoardo
    Bernardi, Alessandra
    Chiantini, Luca
    Guardo, Elena
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1771 - 1785