Job shop smart manufacturing scheduling by deep reinforcement learning

被引:12
|
作者
Serrano-Ruiz, Julio C. [1 ]
Mula, Josefa [1 ]
Poler, Raul [1 ]
机构
[1] Univ Politecn Valencia, Res Ctr Prod Management & Engn CIGIP, C-Alarcon 1, Alcoy, Alicante, Spain
基金
欧盟地平线“2020”;
关键词
Smart manufacturing scheduling; Job shop; Digital twin; Deep reinforcement learning; Industry; 4.0; IMPLEMENTATION;
D O I
10.1016/j.jii.2024.100582
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Smart manufacturing scheduling (SMS) requires a high degree of flexibility to successfully cope with changes in operational decision level planning processes in today's production environments, which are usually subject to high uncertainty. In such a unique and complex scenario as the real job shop, the modelling of SMS as a Markov decision process (MDP), and its approach by deep reinforcement learning (DRL), is a research field of growing interest given its characteristics. It allows us to consider achieving high flexibility levels by promoting process automation, autonomy in decision making, and the ability to act in real time when faced with disturbances and disruptions in a highly dynamic environment. This paper addresses the problem of scheduling a quasi-realistic job shop environment characterised by machines receiving jobs from buffers that accumulate numerous jobs using a wide variety of parts and multimachine routes with a diverse number of operation phases by developing a digital twin of the job shop based on a MDP with the DRL methodology. This is approached by: modelling the job shop scheduling environment with OpenAI Gym; designing an observation space with 18 job features; designing an action space composed of three priority heuristic rules; shaping a single reward function with a multiobjective characteristic; using the implementation of the proximal policy optimisation (PPO) algorithm from the Stable Baselines 3 library. This modelling approach, dubbed as job shop smart manufacturing scheduling (JSSMS), is characterised by deterministic formulation and implementation. The model is subjected to validation by comparing it to several of the best-known heuristic priority rules. The main findings of this methodology allow to replicate, to a great extent, the positive aspects of heuristic rules and to mitigate the negative ones, which achieves more balanced behaviour in most of the measures established as performance indicators and outperforms heuristic rules from this multi-objective perspective. Finally, further research is oriented to dynamic and stochastic approaches to address the job shop reality in an Industry 4.0 context.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Expert-Guided Deep Reinforcement Learning for Flexible Job Shop Scheduling Problem
    Zhang, Wenqiang
    Geng, Huili
    Bao, Xuan
    Gen, Mitsuo
    Zhang, Guohui
    Deng, Miaolei
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 50 - 60
  • [42] Scaling reinforcement learning online job shop scheduling In flexible manufacturing systems to various products
    Baer, Schirin
    Baer, Felix
    Pol, Sebastian
    Meisen, Tobias
    ATP MAGAZINE, 2022, (05): : 52 - 58
  • [43] Reinforcement Learning Based Job Shop Scheduling with Machine Choice
    Wang, Chao
    Zhang, Hongbin
    Guo, Jing
    Chen, Ling
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-3, 2011, 314-316 : 2172 - +
  • [44] Deep Reinforcement Learning for Job Scheduling on Cluster
    Yao, Zhenjie
    Chen, Lan
    Zhang, He
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 613 - 624
  • [45] Dynamic Job-Shop Scheduling via Graph Attention Networks and Deep Reinforcement Learning
    Liu, Chien-Liang
    Tseng, Chun-Jan
    Weng, Po-Hao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (06) : 8662 - 8672
  • [46] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [47] On The Effectiveness Of Bottleneck Information For Solving Job Shop Scheduling Problems Using Deep Reinforcement Learning
    de Puiseau, Constantin Waubert
    Zey, Lennart
    Demir, Merve
    Tercan, Hasan
    Meisen, Tobias
    PROCEEDINGS OF THE CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS, CPSL 2023-2, 2023, : 738 - 749
  • [48] Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning
    Song, Wen
    Chen, Xinyang
    Li, Qiqiang
    Cao, Zhiguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1600 - 1610
  • [49] Dynamic scheduling for multi-objective flexible job shop via deep reinforcement learning
    Yuan, Erdong
    Wang, Liejun
    Song, Shiji
    Cheng, Shuli
    Fan, Wei
    APPLIED SOFT COMPUTING, 2025, 171
  • [50] DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling
    Zhang, Jia-Dong
    He, Zhixiang
    Chan, Wing -Ho
    Chow, Chi -Yin
    KNOWLEDGE-BASED SYSTEMS, 2023, 259