Channel Estimation for Massive MIMO-OFDM: Simplified Information Geometry Approach

被引:1
|
作者
Yang, Jiyuan [1 ,2 ]
Chen, Yan [1 ,2 ]
Lu, An-An [1 ,2 ]
Zhong, Wen [1 ]
Gao, Xiqi [1 ,2 ]
You, Xiaohu [1 ,2 ]
Xia, Xiang-Gen [3 ]
Slock, Dirk [4 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
[3] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
[4] EURECOM, Dept Commun Syst, F-06410 Biot, France
基金
国家重点研发计划;
关键词
D O I
10.1109/VTC2023-Fall60731.2023.10333557
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the channel estimation for massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. We revisit the information geometry approach (IGA) for massive MIMO-OFDM channel estimation. By using the constant magnitude property of the entries of the measurement matrix and the asymptotic analysis, we find that the second-order natural parameters (SONPs) of the distributions on all the auxiliary manifolds (AMs) are equivalent to each other at each iteration of IGA, and the first-order natural parameters (FONPs) of the distributions on all the AMs are asymptotically equivalent to each other at the fixed point. Motivated by these results, we simplify the iterative process of IGA and propose a simplified IGA for massive MIMO-OFDM channel estimation. It is proved that at the fixed point, the a posteriori mean obtained by the simplified IGA is asymptotically optimal. The simplified IGA allows efficient implementation with fast Fourier transformation (FFT). Simulations confirm that the simplified IGA can achieve near the optimal performance with low complexity in a limited number of iterations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Blind channel estimation for MIMO-OFDM systems
    Shin, Changyong
    Heath, Robert W., Jr.
    Powers, Edward J.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007, 56 (02) : 670 - 685
  • [42] Performance of channel estimation in MIMO-OFDM systems
    Pramono, S. (subuhpramono@polines.ac.id), 2013, Universitas Ahmad Dahlan (11):
  • [43] Beamforming-based Spatial Precoding with Channel Estimation for Massive MIMO-OFDM system
    Chiu, Chen-Hao
    Lee, Ju-Hong
    2024 IEEE RADIO AND WIRELESS SYMPOSIUM, RWS, 2024, : 19 - 22
  • [44] Channel Estimation of Massive MIMO-OFDM System Using Elman Recurrent Neural Network
    Nandi, Shovon
    Nandi, Arnab
    Pathak, Narendra Nath
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 9755 - 9765
  • [45] Hybrid Message Passing Algorithm for Downlink FDD Massive MIMO-OFDM Channel Estimation
    Song, Yi
    Zhang, Chuanzong
    Lu, Xinhua
    Saggese, Fabio
    Wang, Zhongyong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4596 - 4609
  • [46] Downlink transmission and channel estimation for cell-free massive MIMO-OFDM with DSDs
    Guo, Yunxiang
    Fan, Zhenqi
    Lu, An
    Wang, Pan
    Liu, Dongjie
    Xia, Xinjiang
    Wang, Dongming
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [47] Large random matrix-based channel estimation for massive MIMO-OFDM uplink
    Sure, Pallaviram
    Babu, Narendra C.
    Bhuma, Chandra Mohan
    IET COMMUNICATIONS, 2018, 12 (09) : 1035 - 1041
  • [48] An Enhanced Whitening Rotation Semi-Blind Channel Estimation for Massive MIMO-OFDM
    Al-Salihi, Hayder
    Nakhai, Mohammad Reza
    2016 23RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2016,
  • [49] Structured Hybrid Message Passing Based Channel Estimation for Massive MIMO-OFDM Systems
    Liu, Xiaofeng
    Wang, Wenjin
    Gong, Xinrui
    Fu, Xiao
    Gao, Xiqi
    Xia, Xiang-Gen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (06) : 7491 - 7507
  • [50] Channel Estimation of Massive MIMO-OFDM System Using Elman Recurrent Neural Network
    Shovon Nandi
    Arnab Nandi
    Narendra Nath Pathak
    Arabian Journal for Science and Engineering, 2022, 47 : 9755 - 9765