Compressive strength prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient boosting technique

被引:10
|
作者
Li, Enming [1 ]
Zhang, Ning [2 ]
Xi, Bin [3 ]
Zhou, Jian [4 ]
Gao, Xiaofeng [5 ]
机构
[1] Univ Politecn Madrid, ETSI Minas & Energia, Madrid 28003, Spain
[2] Leibniz Inst Ecol Urban & Reg Dev IOER, D-01217 Dresden, Germany
[3] Politecn Milan, Dept Civil & Environm Engn, I-20133 Milan, Italy
[4] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
[5] Chongqing Univ, Coll Environm & Ecol, Key Lab Three Gorges Reservoir Reg Ecoenvironm, Minist Educ, Chongqing 400045, Peoples R China
来源
关键词
sustainable concrete; fly ash; slay; extreme gradient boosting technique; squirrel search algorithm; parametric analysis; MECHANICAL-PROPERTIES; FURNACE SLAG; FLY-ASH; PERFORMANCE; AGGREGATE;
D O I
10.1007/s11709-023-0997-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete is the most commonly used construction material. However, its production leads to high carbon dioxide (CO2) emissions and energy consumption. Therefore, developing waste-substitutable concrete components is necessary. Improving the sustainability and greenness of concrete is the focus of this research. In this regard, 899 data points were collected from existing studies where cement, slag, fly ash, superplasticizer, coarse aggregate, and fine aggregate were considered potential influential factors. The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult. Instead of the traditional compressive strength test, this study combines five novel metaheuristic algorithms with extreme gradient boosting (XGB) to predict the compressive strength of green concrete based on fly ash and blast furnace slag. The intelligent prediction models were assessed using the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and variance accounted for (VAF). The results indicated that the squirrel search algorithm-extreme gradient boosting (SSA-XGB) yielded the best overall prediction performance with R2 values of 0.9930 and 0.9576, VAF values of 99.30 and 95.79, MAE values of 0.52 and 2.50, RMSE of 1.34 and 3.31 for the training and testing sets, respectively. The remaining five prediction methods yield promising results. Therefore, the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete. Finally, the developed SSA-XGB considered the effects of all the input factors on the compressive strength. The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.
引用
收藏
页码:1310 / 1325
页数:16
相关论文
共 50 条
  • [41] Machine learning prediction and optimization of compressive strength for blended concrete by applying ANN and genetic algorithm
    Satyanarayana, G. V. V.
    Kumar, C. Vivek
    Karthikeyan, R. M.
    Punitha, A.
    Vatin, Nikolai Ivanovich
    Joshi, Abhishek
    Hussein, Laith
    COGENT ENGINEERING, 2024, 11 (01):
  • [42] Online Prediction and Correction of Static Voltage Stability Index Based on Extreme Gradient Boosting Algorithm
    Qin, Huiling
    Li, Shuang
    Zhang, Juncheng
    Rao, Zhi
    He, Chengyu
    Chen, Zhijun
    Li, Bo
    ENERGIES, 2024, 17 (22)
  • [43] An energy consumption prediction model for electric buses based on extreme gradient boosting fusion algorithm
    Kang, Yiting
    Wei, Jianshu
    Liu, Zhihua
    Xiao, Ke
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2025,
  • [44] Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm
    Huang, Xiao-Yu
    Wu, Ke-Yang
    Wang, Shuai
    Lu, Tong
    Lu, Ying-Fa
    Deng, Wei-Chao
    Li, Hou-Min
    MATERIALS, 2022, 15 (11)
  • [45] Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
    Ahmad, Ayaz
    Farooq, Furqan
    Niewiadomski, Pawel
    Ostrowski, Krzysztof
    Akbar, Arslan
    Aslam, Fahid
    Alyousef, Rayed
    MATERIALS, 2021, 14 (04) : 1 - 21
  • [46] Prediction of concrete compressive strength using deep neural networks based on hyperparameter optimization
    Naved, Mohammed
    Asim, Mohammed
    Ahmad, Tanvir
    COGENT ENGINEERING, 2024, 11 (01):
  • [47] ML prediction and ANN-PSO based optimization for compressive strength of blended concrete
    Reddy, V. Mallikarjuna
    Lomada, Ramaprasad Reddy
    Kumar, C. Vivek
    Karthikeyan, R.
    Sergei, Solovev
    Vatin, Nikolai Ivanovich
    Joshi, Abhishek
    COGENT ENGINEERING, 2024, 11 (01):
  • [48] Prediction of the Height of Fractured Water-Conducting Zone Based on the Improved Cuckoo Search Algorithm-Extreme Learning Machine Model
    Zhu, Zhijie
    Guan, Songsong
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [49] Prediction of bond strength and failure mode of FRP bars embedded in UHPC or UHPSSC utilising extreme gradient boosting technique
    Zhang, Pei-Fu
    Zhao, Xiao-Ling
    Zhang, Daxu
    Iqbal, Mudassir
    Zhao, Xuan
    Zhao, Qi
    Tuerxunmaimaiti, Yiliyaer
    Yu, Congshui
    COMPOSITE STRUCTURES, 2024, 346
  • [50] Prediction of Uniaxial Compressive Strength in Rocks Based on Extreme Learning Machine Improved with Metaheuristic Algorithm
    Qiu, Junbo
    Yin, Xin
    Pan, Yucong
    Wang, Xinyu
    Zhang, Min
    MATHEMATICS, 2022, 10 (19)