Formation Reconfiguration Control With Collision Avoidance of Nonholonomic Mobile Robots

被引:7
|
作者
Park, Seongchang [1 ]
Lee, Seung-Mok [2 ]
机构
[1] Soonchunhyang Univ, Dept Future Convergence Technol, Asan 31538, South Korea
[2] Soonchunhyang Univ, Dept Smart Automobile, Asan 31538, South Korea
基金
新加坡国家研究基金会;
关键词
Collision avoidance; cooperating robots; distributed robot systems; multi-robot systems; NONLINEAR MPC;
D O I
10.1109/LRA.2023.3324593
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter proposes a global optimization-based formation reconfiguration control method for multiple nonholonomic mobile robots. To reconfigure their formation, multiple mobile robots need to move from their initial poses to specific relative poses. However, during the formation reconfiguration process, there is a high risk of collision between robots. Moreover, each robot might fall into a local optimum and fail to converge to the desired formation. To address these problems, we propose a global optimization-based model predictive formation control method that can guarantee collision avoidance. The proposed global optimization-based formation control method effectively avoids local optima, and finds solutions close to the global optimal solution in real-time, ensuring that the desired formation is achieved. To verify the performance of the proposed method, we built hardware-in-the-loop (HIL) simulation using physics simulation and multiple embedded computers to establish an experimental environment that is closely similar to that of real physical multiple mobile robots. Furthermore, we conduct experimental verification using actual physical multiple mobile robots. The proposed method demonstrates the effectiveness of formation reconfiguration for nonholonomic mobile robots.
引用
收藏
页码:7905 / 7912
页数:8
相关论文
共 50 条
  • [31] Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints
    Liang, Yi
    Lee, Ho-Hoon
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 501 - +
  • [32] Distributed Formation Control for a Group of Multiple Nonholonomic Mobile Robots
    Dai Chiming
    Liu Lixia
    Miao Zhonghua
    Zhou Jin
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6183 - 6188
  • [33] The Leader-Follower Formation Control of Nonholonomic Mobile Robots
    Dai, Yanyan
    Lee, Suk-Gyu
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (02) : 350 - 361
  • [34] The leader-follower formation control of nonholonomic mobile robots
    Yanyan Dai
    Suk-Gyu Lee
    International Journal of Control, Automation and Systems, 2012, 10 : 350 - 361
  • [35] Formation Control of Nonholonomic Mobile Robots Using Distributed Estimators
    Lu, Peifen
    Wang, He
    Zhang, Fan
    Yu, Wenwu
    Chen, Guanrong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (12) : 3162 - 3166
  • [36] Flocking and formation control for a group of nonholonomic wheeled mobile robots
    Pliego-Jimenez, Javier
    Martinez-Clark, Rigoberto
    Cruz-Hernandez, Cesar
    Aviles-Velazquez, Jesus David
    Flores-Resendiz, Juan Francisco
    COGENT ENGINEERING, 2023, 10 (01):
  • [37] On the control of a leader-follower formation of nonholonomic mobile robots
    Consolini, Luca
    Morbidi, Fabio
    Prattichizzo, Domenico
    Tosques, Mario
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5993 - +
  • [38] Leader-Follower Control and Collision Avoidance for the Formation of Differentially-Driven Mobile Robots
    Kowalczyk, Wojciech
    Kozlowski, Krzysztof
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 132 - 137
  • [39] Real-time torque control of nonholonomic mobile robots with obstacle avoidance
    Hu, TM
    Yang, SX
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2002, : 81 - 86
  • [40] DISTRIBUTED COLLISION-AVOIDING DEPLOYMENT CONTROL OF MULTIPLE NONHOLONOMIC MOBILE ROBOTS
    Lu, Xionghui
    Zhou, Yu
    Zhong, Xu
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 637 - 645