A 33.5-37.5-GHz Four-Element Phased-Array Transceiver Front-End With Hybrid Architecture Phase Shifters and Gain Controllers

被引:13
|
作者
Guan, Pingda [1 ]
Jia, Haikun [1 ]
Deng, Wei [1 ]
Dong, Shengnan [1 ]
Huang, Xiangrong [1 ]
Wang, Zhihua [1 ]
Chi, Baoyong [1 ]
机构
[1] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
关键词
Switches; Gain; Phase shifters; Attenuation; Transceivers; Gain control; Attenuators; Beamforming; CMOS; millimeter-wave (mm-wave); phased-array; transceiver; DIGITAL STEP ATTENUATOR; LOW INSERTION LOSS; X-BAND; ALGORITHMIC DESIGN; SPDT SWITCH; WIDE-BAND; CMOS; RECEIVER; CHIP;
D O I
10.1109/TMTT.2023.3248175
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To satisfy the requirements for a high output power of the transmitter (TX) and high-quality beamforming with a wide range, fine resolution, high accuracy, and good orthogonality, in this work, we present a 33.5-37.5-GHz four-element phased-array transceiver front-end with two-way power combining power amplifiers (PAs), high-linearity low-loss stacked T/R switches, hybrid architecture phase shifters, and hybrid architecture gain controllers in a 65 nm CMOS process. The hybrid architecture phase shifter combines a reflection-type phase shifter (RTPS) with a 0(?)/180(?) phase switch. The RTPS provides a 180(?)phase shift (PS) range, and the 0(?)/180(?) phase switch expands the 0(?)-180(?) PS states into a full 360(?). The hybrid architecture gain controller combines a 4-bit digital-step single-pole-double-throw (SPDT)-only attenuator with a two-stage 3-bit cascode variable gain amplifier (VGA). The attenuator generates large attenuation states for coarse-tuning, and the VGA generates small gain states for fine-tuning. The proposed phased-array transceiver front-end achieves a Psat of 19.8 dBm and an OP1 dB of 17.2 dBm per element, a 6-bit full 360(?) PS range with an rms phase error lower than 2(?) and a gain variation lower than +/- 2 dB, and a 6-bit 0-31.5 dB gain control range with an rms gain error lower than 0.16 dB and a phase variation lower than +/- 3(?).
引用
收藏
页码:4129 / 4143
页数:15
相关论文
共 32 条
  • [21] A 94-96 GHz Phased-Array Receive Front-End with 5-bit Phase Control and 5 dB Noise Figure in 32 nm CMOS SOI
    Sayginer, Mustafa
    Rebeiz, Gabriel M.
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 764 - 766
  • [22] A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase-Shift Range (vol 65, pg 4703, 2017)
    Garg, Robin
    Natarajan, Arun
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (12) : 5079 - 5080
  • [23] A 28-GHz eight-element phased-array receiver front-end with compact size in 65-nm CMOS technology for 5G new radio
    Tahbazalli, Parsa
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2023, 170
  • [24] 60-GHz Four-Element Phased-Array Transmit/Receive System-in-Package Using Phase Compensation Techniques in 65-nm Flip-Chip CMOS Process
    Kuo, Jing-Lin
    Lu, Yi-Fong
    Huang, Ting-Yi
    Chang, Yi-Long
    Hsieh, Yi-Keng
    Peng, Pen-Jui
    Chang, I-Chih
    Tsai, Tzung-Chuen
    Kao, Kun-Yao
    Hsiung, Wei-Yuan
    Wang, James
    Hsu, Yungping Alvin
    Lin, Kun-You
    Lu, Hsin-Chia
    Lin, Yi-Cheng
    Lu, Liang-Hung
    Huang, Tian-Wei
    Wu, Ruey-Beei
    Wang, Huei
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (03) : 743 - 756
  • [25] A 28GHz CMOS Phased-Array Transceiver Featuring Gain Invariance Based on LO Phase Shifting Architecture with 0.1-Degree Beam-Steering Resolution for 5G New Radio
    Pang, Jian
    Wu, Rui
    Wang, Yun
    Dome, Masato
    Kato, Hisashi
    Huang, Hongye
    Narayanan, Aravind Tharayil
    Liu, Hanli
    Liu, Bangan
    Nakamura, Takeshi
    Fujimura, Takuya
    Kawabuchil, Masaru
    Kubozoe, Ryo
    Miura, Tsuyoshi
    Matsumoto, Daiki
    Oshima, Naoki
    Motoi, Keiichi
    Hori, Shinichi
    Kunihiro, Kazuaki
    Kaneko, Tomoya
    Okada, Kenichi
    PROCEEDINGS OF THE 2018 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2018, : 56 - 59
  • [26] A 24-28 GHz Power and Area Efficient 4-Element Phased-Array Transceiver Front-End with 21.1%/16.6%Transmitter Peak/OP1dB PAE Supporting 2.4 Gb/s in 256-QAM for 5-G Communications
    Zhu, Wei
    Wang, Jiawen
    Lv, Wei
    Zhang, Xiaohan
    Liao, Bingbing
    Zhu, Yanping
    Wang, Yan
    2020 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2020, : 351 - 354
  • [27] A Dual-Mode 24-32 GHz 4-Element Phased-Array Transceiver Front-End with SSA Beamformer for Autonomous Agile Unknown Signal Tracking and Blocker Rejection within <0.1 us and 21.3%/15% Transmitter Peak/OP1dB PAE
    Zhu, Wei
    Wang, Jiawen
    Wang, Ruitao
    Wang, Yan
    2021 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2021,
  • [28] A 24-29.5-GHz Highly Linear Phased-Array Transceiver Front-End in 65-nm CMOS Supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G New Radio
    Yi, Yongran
    Zhao, Dixian
    Zhang, Jiajun
    Gu, Peng
    Chai, Yuan
    Liu, Huiqi
    You, Xiaohu
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (09) : 2702 - 2718
  • [29] A 17.3-mW 0.46-mm2 26/28/39GHz Phased-Array Receiver Front-End with an I/Q-Current-Shared Active Phase Shifter for 5G User Equipment
    Yu, Xiaohua
    Jain, Ajaypat
    Singh, Amitoj
    Elsayed, Omar
    Kuo, Chechun
    Nagarajan, Hariharan
    Yoon, Daeyoung
    Bhagavatula, Venumadhav
    Lu, Ivan Siuchuang
    Son, Sangwon
    Cho, Thomas Byunghak
    2021 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2021, : 107 - 110
  • [30] A 10:1 Bandwidth 2.5-25 GHz Multi-Standard High-Linearity 6-bit Phased-Array Receiver Front-End with Quad-Pole I/Q Network and 2.7° RMS Phase Error
    Liang, Tian
    Hu, Zhaoxin
    Hassan, Omar
    Rebeiz, Gabriel M.
    2024 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, RFIC 2024, 2024, : 175 - 178