Exploring the hidden dimensions of an optical extreme learning machine

被引:3
|
作者
Silva, Duarte [1 ,2 ]
Ferreira, Tiago [1 ,2 ]
Moreira, Felipe C. [1 ,2 ]
Rosa, Carla C. [1 ,2 ]
Guerreiro, Ariel [1 ,2 ]
Silva, Nuno A. [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[2] INESC TEC, Ctr Appl Photon, Rua Campo Alegre 687, P-4169007 Porto, Portugal
关键词
Extreme Learning Machine; Optical Computing; Machine Learning; Optics;
D O I
10.1051/jeos/2023001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Extreme Learning Machines (ELMs) are a versatile Machine Learning (ML) algorithm that features as the main advantage the possibility of a seamless implementation with physical systems. Yet, despite the success of the physical implementations of ELMs, there is still a lack of fundamental understanding in regard to their optical implementations. In this context, this work makes use of an optical complex media and wavefront shaping techniques to implement a versatile optical ELM playground to gain a deeper insight into these machines. In particular, we present experimental evidences on the correlation between the effective dimensionality of the hidden space and its generalization capability, thus bringing the inner workings of optical ELMs under a new light and opening paths toward future technological implementations of similar principles.
引用
收藏
页码:436 / 444
页数:4
相关论文
共 50 条
  • [21] Method of pruning the hidden layer of the extreme learning machine based on correlation coefficient
    de Campos Souza, Paulo Vitor
    Araujo, Vanessa Souza
    Guimaraes, Augusto Junio
    Silva Araujo, Vincius Jonathan
    Rezende, Thiago Silva
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [22] Multi hidden layer extreme learning machine optimised with batch intrinsic plasticity
    Pang, Shan
    Yang, Xinyi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 18 (04) : 375 - 382
  • [23] MODIFICATION OF HIDDEN LAYER WEIGHT IN EXTREME LEARNING MACHINE USING GAIN RATIO
    Anggraeny, Fetty Tri
    Purbasari, Intan Yuniar
    3RD BALI INTERNATIONAL SEMINAR ON SCIENCE & TECHNOLOGY (BISSTECH 2015), 2016, 58
  • [24] Dynamic adjustment of hidden layer structure for convex incremental extreme learning machine
    Sun, Yongjiao
    Chen, Yuangen
    Yuan, Ye
    Wang, Guoren
    NEUROCOMPUTING, 2017, 261 : 83 - 93
  • [25] A study on random weights between input and hidden layers in extreme learning machine
    Wang, Ran
    Kwong, Sam
    Wang, Xizhao
    SOFT COMPUTING, 2012, 16 (09) : 1465 - 1475
  • [26] QR factorization based Incremental Extreme Learning Machine with growth of hidden nodes
    Ye, Yibin
    Qin, Yang
    PATTERN RECOGNITION LETTERS, 2015, 65 : 177 - 183
  • [27] Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers
    Henriquez, Pablo A.
    Ruz, Gonzalo A.
    NEUROCOMPUTING, 2017, 226 : 109 - 116
  • [28] Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine
    Matias, Tiago
    Souza, Francisco
    Araujo, Rui
    Antunes, Carlos Henggeler
    NEUROCOMPUTING, 2014, 129 : 428 - 436
  • [29] A Novel Kernel-based Extreme Learning Machine with Incremental Hidden Layer Nodes
    Min, Mengcan
    Chen, Xiaofang
    Lei, Yongxiang
    Chen, Zhiwen
    Xie, Yongfang
    IFAC PAPERSONLINE, 2020, 53 (02): : 11836 - 11841
  • [30] An online sequential multiple hidden layers extreme learning machine method with forgetting mechanism
    Xiao, Dong
    Li, Beijing
    Zhang, Shengyong
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 176 : 126 - 133