Skew Ornstein-Uhlenbeck processes with sticky reflection and their applications to bond pricing

被引:0
|
作者
Song, Shiyu [1 ]
Xu, Guangli [2 ]
机构
[1] Weifang Univ, Sch Math & Stat, Weifang 261061, Peoples R China
[2] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Skew Ornstein-Uhlenbeck process; sticky reflection; Green function; first hitting time; zero-coupon bond; 1ST PASSAGE TIMES; BROWNIAN-MOTION; BESSEL; LIMIT;
D O I
10.1017/jpr.2023.110
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a skew Ornstein-Uhlenbeck process with zero being a sticky reflecting boundary, which is defined as the weak solution to a stochastic differential equation (SDE) system involving local time. The main results obtained include: (i) the existence and uniqueness of solutions to the SDE system, (ii) the scale function and speed measure, and (iii) the distributional properties regarding the transition density and the first hitting times. On the application side, we apply the process to interest rate modeling and obtain the explicit pricing formula for zero-coupon bonds. Numerical examples illustrate the impacts on bond yields of skewness and stickiness parameters.
引用
收藏
页码:1172 / 1195
页数:24
相关论文
共 50 条
  • [11] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Bai, Yizhou
    Wang, Yongjin
    Zhang, Haoyan
    Zhuo, Xiaoyang
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 479 - 527
  • [12] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Yizhou Bai
    Yongjin Wang
    Haoyan Zhang
    Xiaoyang Zhuo
    Computational Economics, 2022, 60 : 479 - 527
  • [13] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98
  • [14] Non-differentiable skew convolution semigroups and related Ornstein-Uhlenbeck processes
    Dawson, DA
    Li, ZH
    POTENTIAL ANALYSIS, 2004, 20 (03) : 285 - 302
  • [15] Superposition of Ornstein-Uhlenbeck type processes
    Barndorff-Nielsen, OE
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (02) : 175 - 194
  • [16] Ornstein-Uhlenbeck processes on Lie groups
    Baudoin, Fabrice
    Hairer, Martin
    Teichmann, Josef
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) : 877 - 890
  • [17] ASYMPTOTIC SIZE OF THE ORNSTEIN-UHLENBECK PROCESSES
    STOICA, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (04): : 485 - 488
  • [18] Supports of super Ornstein-Uhlenbeck processes
    Bao, Y.
    Chinese Science Bulletin, 40 (13):
  • [19] Supports of super Ornstein-Uhlenbeck processes
    鲍玉芳
    ChineseScienceBulletin, 1995, (13) : 1057 - 1062
  • [20] Functionals of complex Ornstein-Uhlenbeck processes
    Arato, M.
    Baran, S.
    Ispany, M.
    Computers and Mathematics with Applications, 1999, 37 (01): : 1 - 13