Artificial Intelligence-Based, Wavelet-Aided Prediction of Long-Term Outdoor Performance of Perovskite Solar Cells

被引:6
|
作者
Kouroudis, Ioannis [1 ]
Tanko, Kenedy Tabah [2 ,3 ]
Karimipour, Masoud [2 ,3 ]
Ben Ali, Aziz [1 ]
Kumar, D. Kishore [4 ]
Sudhakar, Vediappan [4 ]
Gupta, Ritesh Kant [4 ]
Visoly-Fisher, Iris [4 ]
Lira-Cantu, Monica [2 ,3 ]
Gagliardi, Alessio [1 ,5 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Dept Elect Engn, D-85748 Garching, Germany
[2] Barcelona Inst Sci & Technol, Barcelona, Barcelona 08193, Spain
[3] Barcelona Inst Sci & Technol, Barcelona 08193, Spain
[4] Ben Gurion Univ Negev, Ben Gurion Solar Energy Ctr, Swiss Inst Dryland Environm & Energy Res, Jacob Blaustein Inst Desert Res BIDR, IL-84990 Midreshet Ben Gurion, Israel
[5] TUM, D-85748 Garching, Germany
基金
欧盟地平线“2020”;
关键词
DEGRADATION; PHOTOVOLTAICS; STABILITY;
D O I
10.1021/acsenergylett.4c00328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercial development of perovskite solar cells (PSCs) has been significantly delayed by the constraint of performing time-consuming degradation studies under real outdoor conditions. These are necessary steps to determine the device lifetime, an area where PSCs traditionally suffer. In this work, we demonstrate that the outdoor degradation behavior of PSCs can be predicted by employing accelerated indoor stability analyses. The prediction was possible using a swift and accurate pipeline of machine learning algorithms and mathematical decompositions. By training the algorithms with different indoor stability data sets, we can determine the most relevant stress factors, thereby shedding light on the outdoor degradation pathways. Our methodology is not specific to PSCs and can be extended to other PV technologies where degradation and its mechanisms are crucial elements of their widespread adoption.
引用
收藏
页码:1581 / 1586
页数:6
相关论文
共 50 条
  • [41] Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac Surgery
    Mahayni, Abdulah A.
    Attia, Zachi, I
    Medina-Inojosa, Jose R.
    Elsisy, Mohamed F. A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Kapa, Suraj
    Asirvatham, Samuel J.
    Friedman, Paul A.
    Crestenallo, Juan A.
    Alkhouli, Mohamad
    MAYO CLINIC PROCEEDINGS, 2021, 96 (12) : 3062 - 3070
  • [42] Electrocardiography-based Artificial Intelligence Algorithms Aid in Prediction of Long-term Mortality After Kidney Transplantation
    Pencovich, Niv
    Smith, Byron H.
    Attia, Zachi I.
    Jimenez, Francisco Lopez
    Bentall, Andrew J.
    Schinstock, Carrie A.
    Khamash, Hasan A.
    Jadlowiec, Caroline C.
    Jarmi, Tambi
    Mao, Shennen A.
    Park, Walter D.
    Diwan, Tayyab S.
    Friedman, Paul A.
    Stegall, Mark D.
    TRANSPLANTATION, 2024, 108 (09) : 1976 - 1985
  • [43] Comparison of artificial intelligence and human-based prediction and stratification of the risk of long-term kidney allograft failure
    Divard, Gillian
    Raynaud, Marc
    Tatapudi, Vasishta S.
    Abdalla, Basmah
    Bailly, Elodie
    Assayag, Maureen
    Binois, Yannick
    Cohen, Raphael
    Zhang, Huanxi
    Ulloa, Camillo
    Linhares, Kamila
    Tedesco, Helio S.
    Legendre, Christophe
    Jouven, Xavier
    Montgomery, Robert A.
    Lefaucheur, Carmen
    Aubert, Olivier
    Loupy, Alexandre
    COMMUNICATIONS MEDICINE, 2022, 2 (01):
  • [44] Comparison of artificial intelligence and human-based prediction and stratification of the risk of long-term kidney allograft failure
    Gillian Divard
    Marc Raynaud
    Vasishta S. Tatapudi
    Basmah Abdalla
    Elodie Bailly
    Maureen Assayag
    Yannick Binois
    Raphael Cohen
    Huanxi Zhang
    Camillo Ulloa
    Kamila Linhares
    Helio S. Tedesco
    Christophe Legendre
    Xavier Jouven
    Robert A. Montgomery
    Carmen Lefaucheur
    Olivier Aubert
    Alexandre Loupy
    Communications Medicine, 2
  • [45] COVID-19 Epidemic and Opening of the Schools: Artificial Intelligence-Based Long-Term Adaptive Policy Making to Control the Pandemic Diseases
    Tutsoy, Onder
    IEEE ACCESS, 2021, 9 : 68461 - 68471
  • [46] Sensitivity analysis and ensemble artificial intelligence-based model for short-term prediction of NO2 concentration
    Nourani, V.
    Abdollahi, Z.
    Sharghi, E.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2021, 18 (09) : 2703 - 2722
  • [47] Sensitivity analysis and ensemble artificial intelligence-based model for short-term prediction of NO2 concentration
    V. Nourani
    Z. Abdollahi
    E. Sharghi
    International Journal of Environmental Science and Technology, 2021, 18 : 2703 - 2722
  • [48] Prediction of long-term strength of concrete based on artificial neural network
    Yang Xiaoming
    Shi Dan
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 905 - 908
  • [49] PREDICTION OF LONG-TERM STRENGTH OF CONCRETE BASED ON ARTIFICIAL NEURAL NETWORK
    Yang, Xiaoming
    Shi, Dan
    PROCEEDINGS OF THE TWELFTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOLS I AND II, 2012, : 211 - 215
  • [50] PREDICTION OF LONG-TERM STRENGTH OF CONCRETE BASED ON ARTIFICIAL NEURAL NETWORK
    Yang, Xiaoming
    Shi, Dan
    FUNDAMENTAL RESEARCH IN STRUCTURAL ENGINEERING: RETROSPECTIVE AND PROSPECTIVE, VOLS 1 AND 2, 2016, : 1688 - 1692