Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning

被引:24
|
作者
Zhang, Shaowen [1 ]
Zhu, Haiping [1 ,3 ]
Wu, Jun [2 ,3 ]
Chen, Zhipeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 400073, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 400073, Peoples R China
[3] Natl Ctr Technol Innovat Intelligent Design & Nume, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-health; Convolutional neural network; Bayesian optimization; Transfer learning; CAPACITY; MODEL; OPTIMIZATION; DEGRADATION; REGRESSION; SELECTION;
D O I
10.1016/j.est.2023.108579
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Convenient and accurate state-of-health (SOH) estimation of lithium-ion batteries (LIBs) is crucial for the security of energy storage systems. However, it is a challenging task to estimate the SOH of LIB due to complex cycling conditions and limited training data. The inputs of most existing methods cannot always be satisfied under complex cycle conditions, as cycle conditions may change anytime, especially during dynamic discharge processes. Thus, we propose a new end-to-end SOH estimation method based on relaxation voltage that is not dependent on specific cycling conditions. Specifically, the relaxation voltage profiles at the end of fully charging are input to a one-dimensional convolutional neural network (CNN) to estimate SOH directly. Transfer learning is adopted to leverage the source domain knowledge to the target domain to solve the issue of limited data. Moreover, the most promising CNN hyperparameters are determined automatically by the Bayesian optimization algorithm (BOA) during the pre-training and transfer learning. The accuracy and robustness of the proposed method are verified on two publicly available datasets consisting of 121 and 4 commercial cells, respectively, with a real-driving discharge profile. The root-mean-square errors of the proposed method are 0.0128 and 0.0092, respectively, with only 1.5 % and 10 % training data from the two target domains. The method has a high potential for online applications with preferable accuracy and computational performance. Our work highlights the effectiveness and generalizability of the end-to-end LIBs SOH estimation method based on easily accessible relaxation voltage profiles.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An Estimation Method of Relative State-of-Health for Lithium-Ion Batteries Using Morlet Wavelet
    Zhao Y.
    Xu J.
    Wang H.
    Mei X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (12): : 97 - 103and130
  • [42] Probabilistic lithium-ion battery state-of-health prediction using convolutional neural networks and Gaussian process regression
    Buchanan, Sean
    Crawford, Curran
    JOURNAL OF ENERGY STORAGE, 2024, 76
  • [43] Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization
    Dai, Houde
    Wang, Jiaxin
    Huang, Yiyang
    Lai, Yuan
    Zhu, Liqi
    RENEWABLE ENERGY, 2024, 222
  • [44] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [45] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [46] Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest
    Yang, Niankai
    Song, Ziyou
    Hofmann, Heath
    Sun, Jing
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [47] State-of-Health Estimation of Lithium-Ion Battery Based on Constant Voltage Charging Duration
    Chen, Jinyu
    Chen, Dawei
    Han, Xiaolan
    Li, Zhicheng
    Zhang, Weijun
    Lai, Chun Sing
    BATTERIES-BASEL, 2023, 9 (12):
  • [48] Advanced machine learning techniques for State-of-Health estimation in lithium-ion batteries: A comparative study
    Sedlarik, Marek
    Vyroubal, Petr
    Capkova, Dominika
    Omerdic, Edin
    Rae, Mitchell
    Macak, Martin
    Sedina, Martin
    Kazda, Tomas
    ELECTROCHIMICA ACTA, 2025, 524
  • [49] State of Charge Estimation Model for Lithium-ion Batteries Based on Deep Learning Neural Networks
    Zhang, Song-Bo
    Wang, Xiao-Tian
    Wang, Jie-Sheng
    Liu, Xun
    Engineering Letters, 2024, 32 (02) : 209 - 219
  • [50] State of Health Estimation of Lithium-Ion Batteries Based on Hybrid Neural Networks with Residual Connections
    Zhang, Xugang
    Wang, Ze
    Gong, Qingshan
    Wang, Yan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (02)