Task Scheduling with Improved Particle Swarm Optimization in Cloud Data Center

被引:0
|
作者
Bi, Yang [1 ]
Ni, Wenlong [1 ]
Liu, Yao [1 ]
Lai, Lingyue [1 ]
Zhou, Xinyu [1 ]
机构
[1] Jiangxi Normal Univ, Sch Comp & Informat Engn, Nanchang, Jiangxi, Peoples R China
关键词
Cloud Data Center; Task Scheduling; Particle Swarm Optimization; Simulated Annealing;
D O I
10.1007/978-981-99-8067-3_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved particle swarm optimization algorithm with simulated annealing (IPSO-SA) for the task scheduling problem of cloud data center. The algorithm uses Tent chaotic mapping to make the initial population more evenly distributed. Second, a non-convex function is constructed to adaptively and decreasingly change the inertia weights to adjust the optimization-seeking ability of the particles in different iteration periods. Finally, the Metropolis criterion in SA is used to generate perturbed particles, combined with an modified equation for updating particles to avoid premature particle convergence. Comparative experimental results show that the IPSO-SA algorithm improves 13.8% in convergence accuracy over the standard PSO algorithm. The respective improvements over the other two modified PSO are 15.2% and 9.1%.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 50 条
  • [31] An improved particle swarm optimization for data streams scheduling on heterogeneous cluster
    Xia, Tian
    Guo, Wenzhong
    Chen, Guolong
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 393 - +
  • [32] Chicken swarm optimization in task scheduling in cloud computing
    Han L.
    International Journal of Performability Engineering, 2019, 15 (07): : 1929 - 1938
  • [33] Improved synergistic swarm optimization algorithm to optimize task scheduling problems in cloud computing
    Abualigah, Laith
    Hussein, Ahmad MohdAziz
    Almomani, Mohammad H.
    Abu Zitar, Raed
    Migdady, Hazem
    Alzahrani, Ahmed Ibrahim
    Alwadain, Ayed
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2024, 43
  • [34] Optimization of Multi-core Task Scheduling based on Improved Particle Swarm Optimization Algorithm
    Cheng, Xiaohui
    Chi, Jinqiu
    2019 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING (ICIIP 2019), 2019, : 438 - 444
  • [35] Satellite data transmission task scheduling based on advanced particle swarm optimization
    Chang, Fei
    Wu, Xiao-Yue
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2009, 31 (10): : 2404 - 2408
  • [36] Task scheduling in grid based on particle swarm optimization
    Chen, Tingwei
    Zhang, Bin
    Hao, Xianwen
    Dai, Yu
    ISPDC 2006: FIFTH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, : 238 - +
  • [37] Hybrid Particle Swarm Optimization Scheduling for Cloud Computing
    Sridhar, M.
    Babu, G. Rama Mohan
    2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 1196 - 1200
  • [38] Cloud Resource Scheduling Algorithm Based on Improved LDW Particle Swarm Optimization Algorithm
    Ge Junwei
    Sheng Shuo
    Fang Yiqiu
    2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 669 - 674
  • [39] Improved Particle Swarm Optimization Based Workflow Scheduling in Cloud-Fog Environment
    Xu, Rongbin
    Wang, Yeguo
    Cheng, Yongliang
    Zhu, Yuanwei
    Xie, Ying
    Sani, Abubakar Sadiq
    Yuan, Dong
    BUSINESS PROCESS MANAGEMENT WORKSHOPS, BPM 2018 INTERNATIONAL WORKSHOPS, 2019, 342 : 337 - 347
  • [40] Efficient Task Scheduling for Large-scale Graph Data Processing in Cloud Computing: A Particle Swarm Optimization Approach
    Shang, Rui
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 122 : 135 - 148