Construction of g-C3N4-based photoelectrodes towards photoelectrochemical water splitting: A review

被引:9
|
作者
Zhuang, Huaqiang [1 ]
Lin, Liqin [1 ]
Xu, Miaoqiong [1 ]
Xu, Wentao [1 ]
Liu, Xiaobin [2 ]
机构
[1] Quanzhou Normal Univ, Coll Chem Engn & Mat Sci, Quanzhou 362000, Peoples R China
[2] Quanzhou Normal Univ, Sch Resources & Environm Sci, Quanzhou 362000, Peoples R China
关键词
Photoelectrode; Photoelectrochemical; Water splitting; Progress; HYDROGEN-PRODUCTION; CHARGE SEPARATION; II HETEROJUNCTION; CARBON NITRIDE; DOPED G-C3N4; PERFORMANCE; PHOTOANODES; COCATALYST; DESIGN; PHOTOCATALYSIS;
D O I
10.1016/j.jallcom.2023.172302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of solar energy into chemical energy via photoeletrochemical water splitting technology is a promising strategy to contribute to carbon-neutral systems. In order to rapidly promote pollution-free technology for large-scale use, the required photoelectrode materials need high efficiency, low cost and stability. Interestingly, graphitic carbon nitride (g-C3N4) has attracted much attention, due to its low cost, narrow bandgap, facile synthesis, nontoxic and high stability. These particular properties of g-C3N4 will be beneficial to the development of high-efficiency photoelectrode materials. Up to now, relatively few g-C3N4-based photoanode materials have been studied and reported, so there is a lack of a systematic analysis on g-C3N4-based photoanodes. This review focuses on the recent progress in the design and construction of g-C3N4-based photoelectrodes via the incorporation of various composite materials in the field of photoelectrochemical water splitting. These composite materials include metal oxide, metal hydroxide and metal sulfide, such as NiO, CuO, BiVO4, BiOI, Ni(OH)2, CoMn-layered double hydroxide, MoS2, ZnS, etc. Furthermore, the effects of different kinds of semiconductor promoters on enhanced photoelectrochemical water splitting performance are elucidated in detail. Finally, some challenges and perspectives of high efficiency g-C3N4-based photoelectrodes in the field of photoelectrocatalysis are also proposed.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Review on g-C3N4-based S-scheme heterojunction photocatalysts
    Li, Yunfeng
    Xia, Zhiling
    Yang, Qing
    Wang, Linxi
    Xing, Yan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 125 : 128 - 144
  • [22] g-C3N4-Based Photocatalysts for Hydrogen Generation
    Cao, Shaowen
    Yu, Jiaguo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (12): : 2101 - 2107
  • [23] CuO/g-C3N4 nanocomposite as promising photocatalyst for photoelectrochemical water splitting
    Ragupathi, Veena
    Raja, M. Anthony
    Panigrahi, Puspamitra
    Subramaniam, N. Ganapathi
    OPTIK, 2020, 208
  • [24] p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance
    Wang Ruyi
    Xu Guoliang
    Yang Lei
    Deng Chonghai
    Chu Delin
    Zhang Miao
    Sun Zhaoqi
    JOURNAL OF INORGANIC MATERIALS, 2023, 38 (01) : 87 - +
  • [25] Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting
    Marwa Mohamed Abouelela
    Go Kawamura
    Atsunori Matsuda
    Journal of Energy Chemistry, 2022, 73 (10) : 189 - 213
  • [26] A review on the advancements of graphitic carbon nitride-based photoelectrodes for photoelectrochemical water splitting
    Joseph, Merin
    Kumar, Mohit
    Haridas, Suja
    Subrahmanyam, Challapalli
    Remello, Sebastian Nybin
    ENERGY ADVANCES, 2024, 3 (01): : 30 - 59
  • [27] Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting
    Abouelela, Marwa Mohamed
    Kawamura, Go
    Matsuda, Atsunori
    JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 189 - 213
  • [28] Bifunctional Co3O4/g-C3N4 Hetrostructures for Photoelectrochemical Water Splitting
    Shabbir, Syeda Ammara
    Ali, Iqra
    Haris, Muhammad
    Latif, Hamid
    Sabah, Aneeqa
    Alshomrany, Ali S.
    Bakkour, Youssef
    ACS OMEGA, 2024, 9 (19): : 21450 - 21458
  • [29] Construction of CdS quantum dots modified g-C3N4/ZnO heterostructured photoanode for efficient photoelectrochemical water splitting
    Liu, Changhai
    Qiu, Yangyang
    Zhang, Jin
    Liang, Qian
    Mitsuzaki, Naotoshi
    Chen, Zhidong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 371 : 109 - 117
  • [30] A review on photocatalytic CO2 reduction of g-C3N4 and g-C3N4-based photocatalysts modified by CQDs
    Zhao, Yuan
    Yang, Dongyin
    Yu, Cailian
    Yan, Hong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):