Design strategies of high-performance lead-free electroceramics for energy storage applications

被引:23
|
作者
Guo, Biao [1 ]
Jin, Fei [1 ,2 ,3 ]
Li, Li [1 ]
Pan, Zi-Zhao [1 ]
Xu, Xin-Wei [1 ]
Wang, Hong [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Coll Engn, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Microelect, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
基金
美国国家科学基金会;
关键词
Dielectric materials; Lead-free ceramic; Environment friendly; Energy storage; Design strategy; MULTILAYER CERAMIC CAPACITORS; FREE ANTIFERROELECTRIC CERAMICS; ENHANCED BREAKDOWN STRENGTH; DIELECTRIC-PROPERTIES; ELECTRICAL-PROPERTIES; DENSITY; TEMPERATURE; EFFICIENCY; RELAXATION; FILMS;
D O I
10.1007/s12598-023-02452-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A greater number of compact and reliable electrostatic capacitors are in demand due to the Internet of Things boom and rapidly growing complex and integrated electronic systems, continuously promoting the development of high-energy-density ceramic-based capacitors. Although significant successes have been achieved in obtaining high energy densities in lead-based ferroelectric ceramics, the utilization of lead-containing ceramics has been restricted due to environmental and health hazards of lead. Lead-free ferroelectric ceramics have garnered tremendous attention and are expected to replace lead-based ceramics in the near future. However, the energy density of lead-free ceramics is still lagging behind that of lead-containing counterparts, severely limiting their applications. Significant efforts have been made to enhance the energy storage performance of lead-free ceramics using multi-scale design strategies, and exciting progress has been achieved in the past decade. This review briefly discusses the energy storage mechanism and fundamental characteristics of a dielectric capacitor, summarizes and compares the state-of-the-art design strategies for high-energy-density lead-free ceramics, and highlights several critical issues and requirements for industrial production. The prospects and challenges of lead-free ceramics for energy storage applications are also discussed. (sic)(sic)(sic)(sic)(sic)(sic)兴(sic)(sic)(sic)(sic)(sic)(sic)(sic)offspring(sic)(sic)(sic)迅速(sic)(sic)?(sic)(sic)(sic)offspring(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)且(sic)靠(sic)(sic)(sic)器?(sic)(sic)(sic)(sic)(sic)(sic)(sic)陶瓷(sic)(sic)器(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)铅(sic)陶瓷(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)巨(sic)(sic)(sic)(sic)?(sic)(sic)(sic)铅(sic)(sic)(sic)(sic)(sic)(sic)<SIC><SIC>(sic)(sic)(sic)?铅(sic)陶瓷(sic)(sic)(sic)逐渐(sic)(sic)限(sic).(sic)(sic)(sic)铅陶瓷(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)?且(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)铅(sic)陶瓷(sic)(sic)(sic).(sic)(sic)?(sic)(sic)(sic)铅陶瓷(sic)(sic)(sic)(sic)(sic)仍(sic)(sic)(sic)(sic)铅(sic)陶瓷?(sic)(sic)(sic)(sic)(sic)铅陶瓷(sic)(sic)(sic)(sic)(sic)(sic)限(sic).(sic)(sic)?(sic)(sic)(sic)(sic)<SIC>(sic)(sic)?(sic)(sic)(sic)(sic)<SIC>(sic)(sic)(sic)尺(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)铅陶瓷储(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)令(sic)鼓舞(sic)(sic)(sic).(sic)(sic)(sic)(sic)?(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)器(sic)储(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)?(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)铅陶瓷(sic)(sic)(sic)(sic)(sic)(sic)(sic)?(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)?(sic)(sic)(sic)(sic)铅陶瓷(sic)储(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页码:853 / 878
页数:26
相关论文
共 50 条
  • [41] Novel Strontium Titanate-Based Lead-Free Ceramics for High-Energy Storage Applications
    Yang, Haibo
    Yan, Fei
    Lin, Ying
    Wang, Tong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11): : 10215 - 10222
  • [42] High Energy Storage Performance in BiFeO3-Based Lead-Free High-Entropy Ferroelectrics
    Wu, Jie
    Tan, Hua
    Qi, He
    Yu, Huifen
    Chen, Liang
    Li, Wenchao
    Chen, Jun
    SMALL, 2024, 20 (36)
  • [43] A highly dense structure boosts energy harvesting and cycling reliabilities of a high-performance lead-free energy harvester
    Zheng, Mupeng
    Hou, Yudong
    Yan, Xiaodong
    Zhang, Lina
    Zhu, Mankang
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (31) : 7862 - 7870
  • [44] Lead-free High-performance Slide Bearings for large Combustion Engines
    Gust, Edgar
    Grovskyy, Kostyantyn
    9. VDI-FACHTAGUNG ZYLINDERLAUFBAHN, KOLBEN, PLEUEL 2018: DER KURBELTRIEB IM SPANNUNGSFELD UNTERSCHIEDLICHER ANFORDERUNGEN, 2018, 2317 : 169 - 180
  • [45] High-Performance and Reliable Lead-Free Layered-Perovskite Transistors
    Zhu, Huihui
    Liu, Ao
    Shim, Kyu In
    Hong, Jisu
    Han, Jeong Woo
    Noh, Yong-Young
    ADVANCED MATERIALS, 2020, 32 (31)
  • [46] A lead free relaxation and high energy storage efficiency ceramics for energy storage applications
    Yang, Haibo
    Yan, Fei
    Lin, Ying
    Wang, Tong
    He, Li
    Wang, Fen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 710 : 436 - 445
  • [47] High-performance lead-free perovskite solar cell: a theoretical study
    Umar, Ahmad
    Srivastava, Pranjal
    Sadanand
    Rai, Shambhavi
    Lohia, Pooja
    Dwivedi, Dilip Kumar
    Algadi, Hassan
    Baskoutas, Sotirios
    EMERGING MATERIALS RESEARCH, 2023, 12 (01) : 92 - 99
  • [48] High-entropy lead-free relaxors for large capacitive energy storage with superior comprehensive performance
    Duan, Jianhong
    Wei, Kun
    Qi, He
    Yu, Huifen
    Li, Hao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 228 : 34 - 41
  • [49] Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics
    Fan, Pengyuan
    Zhang, Shan-Tao
    Xu, Jiwen
    Zang, Jiadong
    Samart, Chanatip
    Zhang, Ting
    Tan, Hua
    Salamon, David
    Zhang, Haibo
    Liu, Gang
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (17) : 5681 - 5691
  • [50] Strategies to Improve the Energy Storage Properties of Perovskite Lead-Free Relaxor Ferroelectrics: A Review
    Veerapandiyan, Vignaswaran
    Benes, Federica
    Gindel, Theresa
    Deluca, Marco
    MATERIALS, 2020, 13 (24) : 1 - 47