Artificial intelligence in diabetes management: Advancements, opportunities, and challenges

被引:63
|
作者
Guan, Zhouyu [1 ]
Li, Huating [1 ]
Liu, Ruhan [1 ,2 ,3 ]
Cai, Chun [1 ]
Liu, Yuexing [1 ]
Li, Jiajia [1 ,2 ]
Wang, Xiangning [4 ]
Huang, Shan [1 ,2 ]
Wu, Liang [1 ]
Liu, Dan [1 ]
Yu, Shujie [1 ]
Wang, Zheyuan [1 ,2 ]
Shu, Jia [1 ,2 ]
Hou, Xuhong [1 ]
Yang, Xiaokang [2 ]
Jia, Weiping [1 ]
Sheng, Bin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med 6, Shanghai Peoples Hosp, Shanghai Clin Ctr Diabet,Shanghai Int Joint Lab In, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, MOE Key Lab AI, Shanghai 200240, Peoples R China
[3] Natl Engn Res Ctr Personalized Diagnost & Therapeu, Furong Lab, Changsha, Hunan, Peoples R China
[4] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Ophthalmol, Shanghai 200233, Peoples R China
关键词
DEEP LEARNING ALGORITHM; CHRONIC KIDNEY-DISEASE; NEURAL-NETWORK; RISK-FACTORS; RETINOPATHY; MELLITUS; PREDICTION; CLASSIFICATION; TECHNOLOGY; OUTCOMES;
D O I
10.1016/j.xcrm.2023.101213
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The increasing prevalence of diabetes, high avoidable morbidity and mortality due to diabetes and diabetic complications, and related substantial economic burden make diabetes a significant health challenge world-wide. A shortage of diabetes specialists, uneven distribution of medical resources, low adherence to medi-cations, and improper self-management contribute to poor glycemic control in patients with diabetes. Recent advancements in digital health technologies, especially artificial intelligence (AI), provide a significant opportunity to achieve better efficiency in diabetes care, which may diminish the increase in diabetes-related health-care expenditures. Here, we review the recent progress in the application of AI in the management of diabetes and then discuss the opportunities and challenges of AI application in clinical practice. Furthermore, we explore the possibility of combining and expanding upon existing digital health technologies to develop an AI-assisted digital health-care ecosystem that includes the prevention and management of diabetes.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare
    Aung, Yuri Y. M.
    Wong, David C. S.
    Ting, Daniel S. W.
    BRITISH MEDICAL BULLETIN, 2021, 139 (01) : 4 - 15
  • [22] Artificial intelligence in dermatology: advancements and challenges in skin of color
    Fliorent, Rebecca
    Fardman, Brian
    Podwojniak, Alicia
    Javaid, Kiran
    Tan, Isabella J.
    Ghani, Hira
    Truong, Thu M.
    Rao, Babar
    Heath, Candrice
    INTERNATIONAL JOURNAL OF DERMATOLOGY, 2024, 63 (04) : 455 - 461
  • [23] Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities
    Kusters, Remy
    Misevic, Dusan
    Berry, Hugues
    Cully, Antoine
    Le Cunff, Yann
    Dandoy, Loic
    Diaz-Rodriguez, Natalia
    Ficher, Marion
    Grizou, Jonathan
    Othmani, Alice
    Palpanas, Themis
    Komorowski, Matthieu
    Loiseau, Patrick
    Frier, Clement Moulin
    Nanini, Santino
    Quercia, Daniele
    Sebag, Michele
    Fogelman, Francoise Soulie
    Taleb, Sofiane
    Tupikina, Liubov
    Sahu, Vaibhav
    Vie, Jill-Jenn
    Wehbi, Fatima
    FRONTIERS IN BIG DATA, 2020, 3
  • [24] Artificial Intelligence in Hematology: Current Challenges and Opportunities
    Radakovich, Nathan
    Nagy, Matthew
    Nazha, Aziz
    CURRENT HEMATOLOGIC MALIGNANCY REPORTS, 2020, 15 (03) : 203 - 210
  • [25] Artificial Intelligence in Nursing: New Opportunities and Challenges
    Ramirez-Baraldes, Estella
    Garcia-Gutierrez, Daniel
    Garcia-Salido, Cristina
    EUROPEAN JOURNAL OF EDUCATION, 2025, 60 (01)
  • [26] Challenges and opportunities for artificial intelligence in oncological imaging
    Cheung, H. M. C.
    Rubin, D.
    CLINICAL RADIOLOGY, 2021, 76 (10) : 728 - 736
  • [27] Artificial Intelligence in Hematology: Current Challenges and Opportunities
    Nathan Radakovich
    Matthew Nagy
    Aziz Nazha
    Current Hematologic Malignancy Reports, 2020, 15 : 203 - 210
  • [28] Artificial Intelligence: Opportunities and Challenges for Public Administration
    David, Genevieve
    CANADIAN PUBLIC ADMINISTRATION-ADMINISTRATION PUBLIQUE DU CANADA, 2024, 67 (03): : 388 - 406
  • [29] On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities
    Reyes, Mauricio
    Meier, Raphael
    Pereira, Sergio
    Silva, Carlos A.
    Dahlweid, Fried-Michael
    Von Tengg-Kobligk, Hendrik
    Summers, Ronald M.
    Wiest, Roland
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (03)
  • [30] The Ethics of Artificial Intelligence, Principles, Challenges and Opportunities
    Williams, Nerys
    OCCUPATIONAL MEDICINE-OXFORD, 2024, 74 (09): : 689 - 689