Generalized Cartesian decomposition and numerical radius inequalities

被引:4
|
作者
Bhunia, Pintu [2 ]
Sen, Anirban [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Numerical radius; Usual operator norm; Bounded linear operator; Inequality; OPERATORS; ZEROS; NORM;
D O I
10.1007/s12215-023-00958-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = {lambda is an element of C :| lambda |= 1}. Every linear operator T on a complex Hilbert space H can be decomposed as T = T + lambda T*/2 + i T - lambda T*/2i (lambda is an element of T), designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decompositionwe obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on H, then w(T) >= 1/2 ||T + lambda + mu/2 T*||, for all lambda, mu is an element of T. This improves the existing bounds w(T) >= 1/2 ||T||, w(T) >= ||Re(T)||, w(T) >= ||Im(T)|| and so w(2)(T) >= 1/4 ||T*T + TT*||, where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.
引用
收藏
页码:887 / 897
页数:11
相关论文
共 50 条
  • [41] Notes on some spectral radius and numerical radius inequalities
    Abu-Omar, Amer
    Kittaneh, Fuad
    STUDIA MATHEMATICA, 2015, 227 (02) : 97 - 109
  • [42] On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
    Cristian Conde
    Kais Feki
    Ricerche di Matematica, 2024, 73 : 661 - 679
  • [43] FURTHER IMPROVEMENTS OF GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERTIAN SPACE OPERATORS
    Feki, Kais
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) : 651 - 665
  • [44] On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
    Conde, Cristian
    Feki, Kais
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 661 - 679
  • [45] REFINEMENTS OF NORM AND NUMERICAL RADIUS INEQUALITIES
    Bhunia, Pintu
    Paul, Kallol
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 1953 - 1965
  • [46] Some extended numerical radius inequalities
    Sahoo, Satyajit
    Rout, Nirmal Chandra
    Sababheh, Mohammad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 907 - 920
  • [47] A Convex Treatment of Numerical Radius Inequalities
    Heydarbeygi, Zahra
    Sababheh, Mohammad
    Moradi, Hamid
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 601 - 614
  • [48] Interpolating numerical radius inequalities for matrices
    Ahmad Al-Natoor
    Omar Hirzallah
    Fuad Kittaneh
    Advances in Operator Theory, 2024, 9
  • [49] Numerical Radius and Operator Norm Inequalities
    Khalid Shebrawi
    Hussien Albadawi
    Journal of Inequalities and Applications, 2009
  • [50] Berezin Number and Numerical Radius Inequalities
    Sen, Anirban
    Paul, Kallol
    VIETNAM JOURNAL OF MATHEMATICS, 2025, 53 (02) : 277 - 289