Generalized Cartesian decomposition and numerical radius inequalities

被引:4
|
作者
Bhunia, Pintu [2 ]
Sen, Anirban [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Numerical radius; Usual operator norm; Bounded linear operator; Inequality; OPERATORS; ZEROS; NORM;
D O I
10.1007/s12215-023-00958-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = {lambda is an element of C :| lambda |= 1}. Every linear operator T on a complex Hilbert space H can be decomposed as T = T + lambda T*/2 + i T - lambda T*/2i (lambda is an element of T), designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decompositionwe obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on H, then w(T) >= 1/2 ||T + lambda + mu/2 T*||, for all lambda, mu is an element of T. This improves the existing bounds w(T) >= 1/2 ||T||, w(T) >= ||Re(T)||, w(T) >= ||Im(T)|| and so w(2)(T) >= 1/4 ||T*T + TT*||, where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.
引用
收藏
页码:887 / 897
页数:11
相关论文
共 50 条
  • [1] Generalized Cartesian decomposition and numerical radius inequalities
    Pintu Bhunia
    Anirban Sen
    Kallol Paul
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 887 - 897
  • [2] Cartesian decomposition and numerical radius inequalities
    Kittaneh, Fuad
    Moslehian, Mohammad Sal
    Yamazaki, Takeaki
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 46 - 53
  • [3] NUMERICAL RADIUS INEQUALITIES ASSOCIATED WITH THE CARTESIAN DECOMPOSITION
    Kittaneh, Fuad
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 915 - 922
  • [4] Improved Inequalities for Numerical Radius via Cartesian Decomposition
    Bhunia, P.
    Jana, S.
    Moslehian, M. S.
    Paul, K.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2023, 57 (01) : 18 - 28
  • [5] Improved Inequalities for Numerical Radius via Cartesian Decomposition
    P. Bhunia
    S. Jana
    M. S. Moslehian
    K. Paul
    Functional Analysis and Its Applications, 2023, 57 : 18 - 28
  • [6] GENERALIZED NUMERICAL RADIUS AND RELATED INEQUALITIES
    Bottazzi, T.
    Conde, C.
    OPERATORS AND MATRICES, 2021, 15 (04): : 1289 - 1308
  • [7] Improved lower bounds for numerical radius via Cartesian decomposition
    Alrimawi, Fadi
    Abushaheen, Fuad A.
    Alkhateeb, Rami
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 169 - 175
  • [8] INNER PRODUCT INEQUALITIES THROUGHCARTESIAN DECOMPOSITION WITH APPLICATIONSTO NUMERICAL RADIUS INEQUALITIES
    Nourbakhsh, Saeedatossadat
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    OPERATORS AND MATRICES, 2024, 18 (01): : 69 - 81
  • [9] Convexity and Inequalities of Some Generalized Numerical Radius Functions
    Abbas, Hassane
    Harb, Sadeem
    Issa, Hassan
    FILOMAT, 2022, 36 (05) : 1649 - 1662
  • [10] Generalized A-Numerical Radius of Operators and Related Inequalities
    Bhunia, Pintu
    Feki, Kais
    Paul, Kallol
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3883 - 3907