SEMI-SUPERVISED AND SELF-SUPERVISED COLLABORATIVE LEARNING FOR PROSTATE 3D MR IMAGE SEGMENTATION

被引:0
|
作者
Osman, Yousuf Babiker M. [1 ,2 ]
Li, Cheng [1 ]
Huang, Weijian [1 ,2 ]
Elsayed, Nazik [1 ,2 ,4 ]
Ying, Leslie [5 ,6 ]
Zheng, Hairong [1 ]
Wang, Shanshan [1 ,3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 3, Peoples R China
[3] Guangdong Prov Key Lab Artificial Intelligence Me, Guangzhou, Guangdong, Peoples R China
[4] Univ Gezira, Fac Math & Comp Sci, Wad Madani, Sudan
[5] SUNY Buffalo, Dept Biomed Engn, New York, NY USA
[6] SUNY Buffalo, Dept Elect Engn, New York, NY USA
基金
中国国家自然科学基金;
关键词
Semi-Supervised Learning; Self-Supervised Learning; Pseudo Labeling; Sparse Annotation;
D O I
10.1109/ISBI53787.2023.10230326
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Volumetric magnetic resonance (MR) image segmentation plays an important role in many clinical applications. Deep learning (DL) has recently achieved state-of-the-art or even human-level performance on various image segmentation tasks. Nevertheless, manually annotating volumetric MR images for DL model training is labor-exhaustive and time-consuming. In this work, we aim to train a semi-supervised and self-supervised collaborative learning framework for prostate 3D MR image segmentation while using extremely sparse annotations, for which the ground truth annotations are provided for just the central slice of each volumetric MR image. Specifically, semi-supervised learning and self-supervised learning methods are used to generate two independent sets of pseudo labels. These pseudo labels are then fused by the Boolean operation to extract a more confident pseudo label set. The images with either manual or network self-generated labels are then employed to train a segmentation model for target volume extraction. Experimental results on a publicly available prostate MR image dataset demonstrate that, while requiring significantly less annotation effort, our framework generates very encouraging segmentation results. The proposed framework is very useful in clinical applications when training data with dense annotations are difficult to obtain.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Multi-scale consistency adversarial learning for semi-supervised 3D medical image segmentation
    Guo, Xiurui
    Sun, Kai
    Zheng, Yuanjie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [42] Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images
    Zhou, Yi
    He, Xiaodong
    Huang, Lei
    Liu, Li
    Zhu, Fan
    Cui, Shanshan
    Shao, Ling
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2074 - 2083
  • [43] SEMI-SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 215 - +
  • [44] Self-supervised 3D medical image segmentation by flow-guided mask propagation learning
    Bitarafan, Adeleh
    Mozafari, Mohammad
    Azampour, Mohammad Farid
    Baghshah, Mahdieh Soleymani
    Navab, Nassir
    Farshad, Azade
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [45] Constantly optimized mean teacher for semi-supervised 3D MRI image segmentation
    Li, Ning
    Pan, Yudong
    Qiu, Wei
    Xiong, Lianjin
    Wang, Yaobin
    Zhang, Yangsong
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (07) : 2231 - 2245
  • [46] Joint Supervised and Self-Supervised Learning for 3D Real World Challenges
    Alliegro, Antonio
    Boscaini, Davide
    Tommasi, Tatiana
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6718 - 6725
  • [47] Self-Supervised Feature Extraction for 3D Axon Segmentation
    Klinghoffer, Tzofi
    Morales, Peter
    Park, Young-Gyun
    Evans, Nicholas
    Chung, Kwanghun
    Brattain, Laura J.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4213 - 4219
  • [48] Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
    Hoyer, Lukas
    Dai, Dengxin
    Wang, Qin
    Chen, Yuhua
    Van Gool, Luc
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (08) : 2070 - 2096
  • [49] Semi-supervised vessel wall detection and segmentation from 3D femoral MR images
    Yan, Qinhong
    Chiu, Bernard
    MEDICAL IMAGING 2023, 2023, 12464
  • [50] Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
    Lukas Hoyer
    Dengxin Dai
    Qin Wang
    Yuhua Chen
    Luc Van Gool
    International Journal of Computer Vision, 2023, 131 : 2070 - 2096