Network-based analysis identifies key regulatory transcription factors involved in skin aging

被引:0
|
作者
Ming, Ke [3 ]
Wang, Shuang [4 ]
Wang, Jia [2 ,5 ]
Li, Peng-Long [1 ,2 ]
Tian, Rui-Feng [2 ,5 ]
Liu, Shuai-Yang [1 ,2 ]
Cheng, Xu [6 ,7 ]
Chen, Yun [8 ]
Shi, Wei [1 ,2 ]
Wan, Juan [6 ]
Hu, Manli [6 ,7 ]
Tian, Song [1 ,2 ]
Zhang, Xin [6 ,7 ]
She, Zhi-Gang [2 ,5 ]
Li, Hongliang [1 ,2 ,5 ,6 ,9 ,10 ]
Ding, Yi [4 ,11 ]
Zhang, Xiao-Jing [1 ,2 ,12 ]
机构
[1] Wuhan Univ, Sch Basic Med Sci, Wuhan 430071, Peoples R China
[2] Wuhan Univ, Inst Model Anim, Wuhan 430071, Peoples R China
[3] Hubei Univ, Sch Life Sci, Wuhan 430062, Peoples R China
[4] Huazhong Agr Univ, Coll Vet Med, Wuhan 430070, Peoples R China
[5] Wuhan Univ, Dept Cardiol, Renmin Hosp, Wuhan 430060, Peoples R China
[6] Gannan Med Univ, Gannan Innovat & Translat Med Res Inst, Ganzhou 341000, Peoples R China
[7] Gannan Med Univ, Affiliated Hosp 1, Key Lab Cardiovasc Dis Prevent & Control, Minist Educ, Ganzhou 341000, Peoples R China
[8] Huanggang Cent Hosp, Dept Cardiol, Huanggang 438000, Peoples R China
[9] Wuhan Univ, Med Sci Res Ctr, Zhongnan Hosp, Wuhan 430071, Peoples R China
[10] Wuhan Univ, Dept Cardiol, Renmin Hosp, Luojia Mt Wuchang, Wuhan 430072, Peoples R China
[11] Huazhong Agr Univ, Coll Vet Med, 1 Shizishan Rd, Wuhan 430070, Peoples R China
[12] Wuhan Univ, Sch Basic Med Sci, Luojia Mt Wuchang, Wuhan 430072, Peoples R China
关键词
Skin aging; Transcription factors; Gene regulatory networks; STEM-CELLS; IN-VIVO; MANAGEMENT; DEFICIENCY; EXPRESSION; BRCA1;
D O I
10.1016/j.exger.2023.112202
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Skin aging is a complex process involving intricate genetic and environmental factors. In this study, we performed a comprehensive analysis of the transcriptional regulatory landscape of skin aging in canines. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify aging-related gene modules. We subsequently validated the expression changes of these module genes in single-cell RNA sequencing (scRNA-seq) data of human aging skin. Notably, basal cell (BC), spinous cell (SC), mitotic cell (MC), and fibroblast (FB) were identified as the cell types with the most significant gene expression changes during aging. By integrating GENIE3 and RcisTarget, we constructed gene regulation networks (GRNs) for aging-related modules and identified core transcription factors (TFs) by intersecting significantly enriched TFs within the GRNs with hub TFs from WGCNA analysis, revealing key regulators of skin aging. Furthermore, we demonstrated the conserved role of CTCF and RAD21 in skin aging using an H2O2-stimulated cell aging model in HaCaT cells. Our findings provide new insights into the transcriptional regulatory landscape of skin aging and unveil potential targets for future intervention strategies against age-related skin disorders in both canines and humans.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Genome-Wide Network-Based Analysis of Colorectal Cancer Identifies Novel Prognostic Factors and an Integrative Prognostic Index
    Hou, Xiaolin
    He, Xuelai
    Wang, Kang
    Hou, Nengyi
    Fu, Junwen
    Jia, Guiqing
    Zuo, Xiaofei
    Xiong, Haibo
    Pang, Minghui
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 49 (05) : 1703 - 1716
  • [42] Genetic regulatory network-based symbiotic evolution
    Hu, Jhen-Jia
    Li, Tzuu-Hseng S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 4756 - 4773
  • [43] Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration
    Su, Li-ning
    Song, Xiao-qing
    Xue, Zhan-xia
    Zheng, Chen-qing
    Yin, Hai-feng
    Wei, Hui-ping
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2018, 19 (04): : 293 - 304
  • [44] Identification of key transcription factors - gene regulatory network related with osteogenic differentiation of human mesenchymal stem cells based on transcription factor prognosis system
    Kang, Xuefeng
    Sun, Yong
    Zhang, Zhao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 17 (03) : 2113 - 2122
  • [45] Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs
    Guo, Yu
    Alexander, Katherine
    Clark, Andrew G.
    Grimson, Andrew
    Yu, Haiyuan
    RNA, 2016, 22 (11) : 1663 - 1672
  • [46] Replicative senescence, aging and growth-regulatory transcription factors
    Dimri, GP
    Testori, A
    Acosta, M
    Campisi, J
    BIOLOGICAL SIGNALS, 1996, 5 (03): : 154 - 162
  • [47] MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network
    Samad, Abdul F. A.
    Sajad, Muhammad
    Nazaruddin, Nazaruddin
    Fauzi, Izzat A.
    Murad, Abdul M. A.
    Zainal, Zamri
    Ismail, Ismanizan
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [48] A BAYESIAN NETWORK-BASED APPROACH TO CONSTRUCTING GENE REGULATORY NETWORK
    Dong Yingli
    Sun Xiao
    Xie Jianming
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 163 - 165
  • [49] Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
    B. M. H. Heuts
    S. Arza-Apalategi
    S. Frölich
    S. M. Bergevoet
    S. N. van den Oever
    S. J. van Heeringen
    B. A. van der Reijden
    J. H. A. Martens
    Scientific Reports, 12
  • [50] Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework
    Heuts, B. M. H.
    Arza-Apalategi, S.
    Frolich, S.
    Bergevoet, S. M.
    van den Oever, S. N.
    van Heeringen, S. J.
    van der Reijden, B. A.
    Martens, J. H. A.
    SCIENTIFIC REPORTS, 2022, 12 (01)