Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics

被引:2
|
作者
Yu, Qi [1 ,2 ]
Wang, Keyong [1 ]
Zhang, Xuebing [3 ]
Sun, Qingfei [1 ]
Bai, Wenqiang [4 ]
Ma, Chao [2 ]
Xiao, Yongchun [2 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China
[2] Geol Survey Inst Jilin Prov, Changchun 130102, Peoples R China
[3] Xinjiang Univ, Coll Geol & Min Engn, Urumqi 830047, Peoples R China
[4] Team 603 Jilin Nonferrous Met Geol Explorat Bur, Yanji 133300, Peoples R China
关键词
fluid evolution; ore genesis; H-O-S-Pb isotopes; Songjianghe Au deposit; NE China; JIAPIGOU GOLD BELT; ZIRCON U-PB; ASIAN OROGENIC BELT; FORMING FLUIDS; NORTHEAST CHINA; TRACE-ELEMENTS; CRUSTAL GROWTH; TECTONIC IMPLICATIONS; GREENSTONE-BELT; STABLE-ISOTOPE;
D O I
10.3390/min13050652
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The medium-sized Songjianghe Au deposit is located in the southeastern part of the Jiapigou-Haigou gold belt (JHGB) in central eastern Jilin Province, NE China. The gold mineralization is primarily characterized by disseminated-style ores and hosted in the low-/medium-grade metamorphic rocks of the Seluohe Group. The ore bodies are governed by NNW-striking brittle-ductile structures and spatially correlated with silicic and sericitic alterations. Four alteration/mineralization stages have been distinguished: (I) Quartz-pyrrhotite-pyrite, (II) quartz-polymetallic sulfides, (III) quartz-pyrite, and (IV) quartz-calcite. The fluid inclusion (FI) assemblage in quartz from Stage I comprises C1-type, C2-type, C3-type, and VL-type FIs, with total homogenization temperatures (Th-total) of 292.8 to 405.6 degrees C and salinities of 2.8 to 9.3 wt% NaCl eqv. Quartz from Stage II (main ore stage) developed C2-, C3-, and VL-type FIs, with a Th-total of 278.5 to 338.9 degrees C and salinities of 2.8 to 8.1 wt% NaCl eqv. Stage III is characterized by coexisting C3- and VL-type FIs in quartz, with a Th-total of 215.9 to 307.3 degrees C and salinities of 2.4 to 7.2 wt% NaCl eqv. Only VL-type FIs are observed in Stage IV, with a Th-total of 189.5 to 240.4 degrees C and salinities of 3.7 to 5.7 wt% NaCl eqv. The Laser Raman spectroscopic results demonstrated minor CH4 in the C-type FIs from Stages I and II. The results suggest that ore fluids may have evolved from a medium-high temperature, low-salinity immiscible CO2-NaCl-H2O +/- CH4 system to a low temperature, low-salinity homogeneous NaCl-H2O system. Fluid immiscibility caused by the rapid drop in pressure may have been the main trigger for gold-polymetallic sulfide precipitation. The Songjianghe Au deposit may have been formed under 352-448 degrees C and 850-1380 bar pressure, based on the isochore intersection for Stage II fluid inclusions. The H-O isotopic compositions (Stage I: delta O-18(fluid) = 5.6 to 5.8 parts per thousand, delta D = -96.2 to -95.7 parts per thousand; Stage II: delta O-18(fluid) = 3.7 to 4.2 parts per thousand, delta D = -98.7 to -89.8 parts per thousand; Stage III: delta O-18(fluid) = 1.2 to 1.4 parts per thousand, delta D = -103.5 to -101.2 parts per thousand) indicate that the hydrothermal fluids are dominated by magmatic water in the early stages (Stages I and II) and mixed with meteoric water since Stage III. The pyrite S-Pb isotope data ( delta S-34: -2.91 to 3.40 parts per thousand; Pb-206/Pb-204: 16.3270 to 16.4874; Pb-207/Pb-204: 15.2258 to 15.3489; Pb-208/Pb-204: 36.6088 to 36.7174), combined with Pb isotopic compositions of the intrusive rocks and wall rocks (the Seluohe Group) in the ore district, indicate that the ore-forming materials at Songjianghe are predominantly from a magmatic source and may have been affected by the contamination of the Seluohe Group. In accordance with the features of ore geology, ore-forming fluids and metals, and geodynamic setting, the Songjianghe Au deposit belongs to a mesothermal magmatic hydrothermal vein gold deposit, which formed in the intermittent stage of Paleo-Pacific plate subduction during the Late Jurassic.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Genesis of the Fuxing porphyry Cu deposit in Eastern Tianshan, China: Evidence from fluid inclusions and C-H-O-S-Pb isotope systematics
    Wang, Yin-Hong
    Zhang, Fang-Fang
    Liu, Jia-Jun
    Que, Chao-Yang
    ORE GEOLOGY REVIEWS, 2016, 79 : 46 - 61
  • [32] Genesis of the Bagenheigeqier Pb-Zn skarn deposit in Inner Mongolia, NE China: constraints from fluid inclusions, isotope systematics and geochronology
    Cai, Wen-yan
    Wang, Ke-yong
    Li, Jian
    Fu, Li-juan
    Li, Shun-da
    Yang, He
    Konare, Yassa
    GEOLOGICAL MAGAZINE, 2021, 158 (02) : 271 - 294
  • [33] Ore genesis of Qingyunshan Cu-Au deposit in the Dehua-Youxi area of Fujian Province, southeastern China: Constraints from U-Pb and Re-Os geochronology, fluid inclusions, and H-O-S-Pb isotope data
    Xiao, Fan
    Fan, Fei-Peng
    Xing, Guang-Fu
    Jiang, Shao-Yong
    ORE GEOLOGY REVIEWS, 2021, 132
  • [34] Ore genesis and hydrothermal evolution of the Wulandele Mo deposit, Inner Mongolia, Northeast China: Evidence from geology, fluid inclusions and H-O-S-Pb isotopes
    Zhang, Fang-Fang
    Wang, Yin-Hong
    Liu, Jia-Jun
    Wang, Ji-Chun
    ORE GEOLOGY REVIEWS, 2018, 93 : 181 - 199
  • [35] Ore genesis of the Baiyun gold deposit in Liaoning province, NE China: constraints from fluid inclusions and zircon U-Pb ages
    Sun, Guotao
    Zeng, Qingdong
    Li, Taiyang
    Li, An
    Wang, Enyuan
    Xiang, Chunsheng
    Wang, Yongbin
    Chen, Peiwen
    Yu, Bing
    ARABIAN JOURNAL OF GEOSCIENCES, 2019, 12 (09)
  • [36] Fluid inclusions, C-H-O-S-Pb isotope systematics, geochronology and geochemistry of the Budunhua Cu deposit, northeast China: Implications for ore genesis
    Shi, Kaituo
    Wang, Keyong
    Ma, Xueli
    Li, Shunda
    Li, Jian
    Wang, Rui
    GEOSCIENCE FRONTIERS, 2020, 11 (04) : 1145 - 1161
  • [37] Fluid inclusions,C-H-O-S-Pb isotope systematics,geochronology and geochemistry of the Budunhua Cu deposit,northeast China:Implications for ore genesis
    Kaituo Shi
    Keyong Wang
    Xueli Ma
    Shunda Li
    Jian Li
    Rui Wang
    Geoscience Frontiers, 2020, 11 (04) : 1145 - 1161
  • [38] Geology, fluid inclusion and H-O-S-Pb isotope study of the Ganhegou epithermal gold deposit in Yanbian, NE China: Implications for ore genesis and mineralization process
    Xu, Zhi-Kai
    Sun, Jing-Gui
    Liu, Yang
    Han, Ji-Long
    Xu, Zhi-Tao
    Liang, Xiao-Long
    ORE GEOLOGY REVIEWS, 2021, 135
  • [39] Multistage Genesis of the Haerdaban Pb-Zn Deposit, West Tianshan: Constraints From Fluid Inclusions and H-O-S-Pb Isotopes
    Xia, Fang
    Li, Shun-Da
    Chen, Chuan
    Gao, Ling-Ling
    Zhang, Xue-Bing
    Wang, Ke-Yong
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [40] Fluid Evolution and Ore Genesis of the Qibaoshan Polymetallic Ore Field, Shandong Province, China: Constraints from Fluid Inclusions and H-O-S Isotopic Compositions
    Yu, Guang-Yuan
    Li, Shun-Da
    Wang, Yi-Cun
    Wang, Ke-Yong
    MINERALS, 2019, 9 (07)