Deep learning in medical image super resolution: a review

被引:21
|
作者
Yang, Hujun [1 ]
Wang, Zhongyang [2 ,3 ]
Liu, Xinyao [1 ]
Li, Chuangang [1 ]
Xin, Junchang [2 ,3 ]
Wang, Zhiqiong [1 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang 110169, Peoples R China
[2] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110169, Peoples R China
[3] Northeastern Univ, Key Lab Big Data Management & Analyt, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution; Medical image; Deep learning; Assessment metrics; Review; MULTI-CONTRAST SUPERRESOLUTION; QUALITY ASSESSMENT; MRI; NETWORK; SINGLE; ATTENTION; CT;
D O I
10.1007/s10489-023-04566-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Super-resolution (SR) reconstruction is a hot topic in medical image processing. SR implies reconstructing corresponding high-resolution (HR) images from observed low-resolution (LR) images or image sequences. In recent years, significant breakthroughs in SR based on deep learning have been made, and many advanced results have been achieved. However, there is a lack of review literature that summarizes the field's current state and provides an outlook on future developments. Therefore, we provide a comprehensive summary of the literature on medical image SR (MedSR) based on deep learning since 2018 in five aspects: (1) The SR problem of medical images is described, and the methods of image degradation are summarized. (2) We divide the existing studies into three categories: two-dimensional image SR (2DISR), three-dimensional image SR (3DISR), and video SR (VSR). Each category is subdivided. We analyze the network structure and method characteristics of typical methods. (3) Existing SR reconstruction quality evaluation metrics are presented in detail. (4) The application of MedSR methods based on deep learning is discussed. (5) We discuss the challenges of this phase and point out valuable research directions.
引用
收藏
页码:20891 / 20916
页数:26
相关论文
共 50 条
  • [21] A Review of Single Image Super-resolution Reconstruction Algorithms Based on Deep Learning
    Li J.-X.
    Zhao Y.-X.
    Wang J.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (10): : 2341 - 2363
  • [22] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,
  • [23] Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image
    Zhang, YiNan
    An, MingQiang
    JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [24] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [25] Super-Resolution of Medical Image Using Representation Learning
    Yang, Xiong
    Zhan, Shu
    Hu, Changsheng
    Liang, Zhicheng
    Xie, Dongdong
    2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,
  • [26] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [27] Learning Deep Analysis Dictionaries for Image Super-Resolution
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6633 - 6648
  • [28] Single Image Super Resolution Using Deep Residual Learning
    Hassan, Moiz
    Illanko, Kandasamy
    Fernando, Xavier N.
    AI, 2024, 5 (01) : 426 - 445
  • [29] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [30] Image Super Resolution Reconstruction Algorithm Based on Deep Learning
    Dou, Huijing
    Zhang, Wenqian
    Liang, Xiao
    2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 306 - 310