Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset

被引:21
|
作者
Conrad, Ryan [1 ,2 ]
Narayan, Kedar [1 ,2 ]
机构
[1] NCI, Ctr Mol Microscopy, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] Frederick Natl Lab Canc Res, Canc Res Technol Program, Frederick, MD 21702 USA
基金
美国国家卫生研究院;
关键词
RENAL-DISEASE; VOLUME; FISSION; DYSFUNCTION; FUSION;
D O I
10.1016/j.cels.2022.12.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are extremely pleomorphic organelles. Automatically annotating each one accurately and pre-cisely in any 2D or volume electron microscopy (EM) image is an unsolved computational challenge. Current deep learning-based approaches train models on images that provide limited cellular contexts, precluding generality. To address this, we amassed a highly heterogeneous-1.5 3 106 image 2D unlabeled cellular EM dataset and segmented-135,000 mitochondrial instances therein. MitoNet, a model trained on these re-sources, performs well on challenging benchmarks and on previously unseen volume EM datasets containing tens of thousands of mitochondria. We release a Python package and napari plugin, empanada, to rapidly run inference, visualize, and proofread instance segmentations. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:58 / +
页数:19
相关论文
共 50 条
  • [41] Optimal Trained Deep Learning Model for Breast Cancer Segmentation and Classification
    Krishnakumar, B.
    Kousalya, K.
    INFORMATION TECHNOLOGY AND CONTROL, 2023, 52 (04): : 915 - 934
  • [42] Automated Labeling of Electron Microscopy Images Using Deep Learning
    Weber, Gunther H.
    Ophus, Colin
    Ramakrishnan, Lavanya
    PROCEEDINGS OF 2018 IEEE/ACM MACHINE LEARNING IN HPC ENVIRONMENTS (MLHPC 2018), 2018, : 26 - 36
  • [43] Segmentation of scanning electron microscopy images using incremental learning.
    Impoco, G.
    Tuminello, L.
    Caccamo, M.
    Licitra, G.
    JOURNAL OF DAIRY SCIENCE, 2010, 93 : 749 - 749
  • [44] FoveaMask: A fast and accurate deep learning model for green fruit instance segmentation
    Jia, Weikuan
    Zhang, Zhonghua
    Shao, Wenjing
    Hou, Sujuan
    Ji, Ze
    Liu, Guoliang
    Yin, Xiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [45] Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images
    James P. Horwath
    Dmitri N. Zakharov
    Rémi Mégret
    Eric A. Stach
    npj Computational Materials, 6
  • [46] Segmentation of cellular ultrastructures on sparsely labeled 3D electron microscopy images using deep learning
    Machireddy, Archana
    Thibault, Guillaume
    Loftis, Kevin G.
    Stoltz, Kevin
    Bueno, Cecilia E.
    Smith, Hannah R.
    Riesterer, Jessica L.
    Gray, Joe W.
    Song, Xubo
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [47] Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images
    Horwath, James P.
    Zakharov, Dmitri N.
    Megret, Remi
    Stach, Eric A.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [48] Automatic Multiclass Instance Segmentation of Concrete Damage Using Deep Learning Model
    Kumar, Prashant
    Sharma, Apurva
    Kota, Solomon Raju
    IEEE ACCESS, 2021, 9 : 90330 - 90345
  • [49] MitoNet: A generalizable model for segmentation of individual mitochondria within electron microscopy datasets
    Glancy, Brian
    CELL SYSTEMS, 2023, 14 (01) : 7 - 8
  • [50] EM-net: Deep learning for electron microscopy image segmentation
    Khadangi, Afshin
    Boudier, Thomas
    Rajagopal, Vijay
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 31 - 38