EXOTIC T-STRUCTURES FOR TWO-BLOCK SPRINGER FIBRES

被引:1
|
作者
Anno, R. I. N. A. [1 ]
Nandakumar, V. I. N. O. T. H. [2 ]
机构
[1] Kansas State Univ, Dept Math, 138 Cardwell Hall,1228 N 17th St, Manhattan, KS 66506 USA
[2] Univ Utah, Dept Math, 155 S 1400 E, Salt Lake City, UT 84102 USA
关键词
LIE-ALGEBRA; CATEGORIES; COBORDISMS;
D O I
10.1090/tran/8765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the category of representations of slm+2n in positive characteristic, with p-character given by a nilpotent with Jordan type (m + n, n). Recent work of Bezrukavnikov-Mirkovic [Ann. of Math. (2) 178 (2013), pp. 835-919] implies that this representation category is equivalent to D0 m,n, the heart of the exotic t-structure on the derived category of coherent sheaves on a Springer fibre for that nilpotent. Using work of Cautis and Kamnitzer [Duke Math. J. 142 (2008), pp. 511-588], we construct functors indexed by affine tangles, between these categories Dm,n (i.e. for different values of n). This allows us to describe the irreducible objects in D0m,nand enumerate them by crossingless (m, m + 2n) matchings. We compute the Ext spaces between the irreducible objects, and conjecture that the resulting Ext algebra is an annular variant of Khovanov's arc algebra. In subsequent work, we use these results to give combinatorial dimension formulae for the irreducible representations. These results may be viewed as a positive characteristic analogue of results about two-block parabolic category O due to Lascoux-Schutzenberger [Aste ' risque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249-266], BernsteinFrenkel-Khovanov [Selecta Math. (N.S.) 5 (1999), pp. 199-241], BrundanStroppel [Represent. Theory 15 (2011), pp. 170-243], et al.
引用
收藏
页码:1523 / 1552
页数:30
相关论文
共 50 条
  • [31] H∞ two-block design of servo systems
    Wang, Guang-Xiong
    Wang, Xin-Sheng
    Journal of Harbin Institute of Technology (New Series), 2002, 9 (02) : 142 - 144
  • [32] t-Structures are Normal Torsion Theories
    Domenico Fiorenza
    Fosco Loregiàn
    Applied Categorical Structures, 2016, 24 : 181 - 208
  • [33] Obstructions to the Existence of Bounded t-Structures
    Neeman, Amnon
    TRIANGULATED CATEGORIES IN REPRESENTATION THEORY AND BEYOND, ABEL SYMPOSIUM 2022, 2024, 17 : 195 - 215
  • [34] Quantum two-block group algebra codes
    Lin, Hsiang -Ku
    Pryadko, Leonid P.
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [35] T-structures on unbounded twisted complexes
    Genovese, Francesco
    MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (02)
  • [36] On optimal solutions to two-block h∞ problems
    Hassibi, B
    Kailath, T
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 1975 - 1979
  • [37] On perfectly generated weight structures and adjacent t-structures
    Mikhail V. Bondarko
    Mathematische Zeitschrift, 2022, 300 : 1421 - 1454
  • [38] Compatibility of t-Structures in a Semiorthogonal Decomposition
    Antonio Lorenzin
    Applied Categorical Structures, 2022, 30 (4) : 755 - 778
  • [39] T-structures on unbounded twisted complexes
    Francesco Genovese
    Mathematische Zeitschrift, 2023, 305
  • [40] Staggered t-structures on toric varieties
    Treumann, David
    JOURNAL OF ALGEBRA, 2010, 323 (05) : 1212 - 1225