Black-box Bayesian inference for agent-based models

被引:5
|
作者
Dyer, Joel [1 ,2 ]
Cannon, Patrick
Farmer, J. Doyne [1 ,3 ,4 ]
Schmon, Sebastian M.
机构
[1] Inst New Econ Thinking, Manor Rd Bldg,Manor Rd, Oxford OX1 3UQ, England
[2] Univ Oxford, Dept Comp Sci, 7 Parks Rd, Oxford OX1 3QG, England
[3] Univ Oxford, Sch Geog & Environm, Smith Sch Enterprise & Environm, Oxford OX1 3QY, England
[4] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
来源
基金
英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
Agent-based models; Bayesian inference; Neural networks; Parameter estimation; Simulation-based inference; Time series; EMPIRICAL VALIDATION; DENSITY-ESTIMATION; COMPUTATION; SELECTION; ABC;
D O I
10.1016/j.jedc.2024.104827
中图分类号
F [经济];
学科分类号
02 ;
摘要
Simulation models, in particular agent -based models, are gaining popularity in economics and the social sciences. The considerable flexibility they offer, as well as their capacity to reproduce a variety of empirically observed behaviours of complex systems, give them broad appeal, and the increasing availability of cheap computing power has made their use feasible. Yet a widespread adoption in real -world modelling and decision -making scenarios has been hindered by the difficulty of performing parameter estimation for such models. In general, simulation models lack a tractable likelihood function, which precludes a straightforward application of standard statistical inference techniques. A number of recent works have sought to address this problem through the application of likelihood -free inference techniques, in which parameter estimates are determined by performing some form of comparison between the observed data and simulation output. However, these approaches are (a) founded on restrictive assumptions, and/or (b) typically require many hundreds of thousands of simulations. These qualities make them unsuitable for large-scale simulations in economics and the social sciences, and can cast doubt on the validity of these inference methods in such scenarios. In this paper, we investigate the efficacy of two classes of simulation -efficient black -box approximate Bayesian inference methods that have recently drawn significant attention within the probabilistic machine learning community: neural posterior estimation and neural density ratio estimation. We present a number of benchmarking experiments in which we demonstrate that neural network -based black -box methods provide state of the art parameter inference for economic simulation models, and crucially are compatible with generic multivariate or even non-Euclidean time -series data. In addition, we suggest appropriate assessment criteria for use in future benchmarking of approximate Bayesian inference procedures for simulation models in economics and the social sciences.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Provable convergence guarantees for black-box variational inference
    Domke, Justin
    Garrigos, Guillaume
    Gower, Robert
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [42] Bayesian Performance Analysis for Black-Box Optimization Benchmarking
    Calvo, Borja
    Shir, Ofer M.
    Ceberio, Josu
    Doerr, Carola
    Wang, Hao
    Back, Thomas
    Lozano, Jose A.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1789 - 1797
  • [43] Black-box Bayesian adversarial attack with transferable priors
    Zhang, Shudong
    Gao, Haichang
    Shu, Chao
    Cao, Xiwen
    Zhou, Yunyi
    He, Jianping
    MACHINE LEARNING, 2024, 113 (04) : 1511 - 1528
  • [44] Black-box Bayesian adversarial attack with transferable priors
    Shudong Zhang
    Haichang Gao
    Chao Shu
    Xiwen Cao
    Yunyi Zhou
    Jianping He
    Machine Learning, 2024, 113 : 1511 - 1528
  • [45] OneMax in Black-Box Models with Several Restrictions
    Carola Doerr
    Johannes Lengler
    Algorithmica, 2017, 78 : 610 - 640
  • [46] ONEMAX in Black-Box Models with Several Restrictions
    Doerr, Carola
    Lengler, Johannes
    ALGORITHMICA, 2017, 78 (02) : 610 - 640
  • [47] Testing Framework for Black-box AI Models
    Aggarwal, Aniya
    Shaikh, Samiulla
    Hans, Sandeep
    Haldar, Swastik
    Ananthanarayanan, Rema
    Saha, Diptikalyan
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2021), 2021, : 81 - 84
  • [48] Auditing black-box models for indirect influence
    Adler, Philip
    Falk, Casey
    Friedler, Sorelle A.
    Nix, Tionney
    Rybeck, Gabriel
    Scheidegger, Carlos
    Smith, Brandon
    Venkatasubramanian, Suresh
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 54 (01) : 95 - 122
  • [49] Demystifying Black-box Models with Symbolic Metamodels
    Alaa, Ahmed M.
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [50] Auditing Black-box Models for Indirect Influence
    Adler, Philip
    Falk, Casey
    Friedler, Sorelle A.
    Rybeck, Gabriel
    Scheidegger, Carlos
    Smith, Brandon
    Venkatasubramanian, Suresh
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1 - 10