Integrating in-situ multi-modal characterizations with signatures to investigate localized deformation

被引:3
|
作者
Shadle, D. J. [1 ]
Nygren, K. E. [2 ]
Stinville, J. C. [3 ]
Charpagne, M. A. [3 ]
Long, T. J. H. [4 ]
Echlin, M. P. [5 ]
Budrowf, C. J. [6 ]
Polonsky, A. T. [7 ]
Pollock, T. M. [5 ]
Beyerlein, I. J. [8 ]
Miller, M. P. [1 ,2 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Cornell High Energy Synchrotron Source, Ithaca, NY USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL USA
[4] Johns Hopkins Univ, Baltimore, MD USA
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA USA
[6] Budrow Consulting, Albany, NY USA
[7] Sandia Natl Labs, Mat Mech & Tribol Dept, Albuquerque, NM USA
[8] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA USA
基金
美国国家科学基金会;
关键词
High energy X-ray diffraction microscopy; Electron backscatter diffraction; Signature discovery; Intragranular deformation; X-RAY; ORIENTATION; SLIP; DISTRIBUTIONS; INTERMEDIATE; SUPERALLOY; MICROSCOPY; EVOLUTION; BEHAVIOR; GRAINS;
D O I
10.1016/j.matchar.2023.113332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-modal approaches are often essential for exploring the intricate facets of complex materials phenomena. Each characterization technique contributes a unique perspective that, when linked with other techniques, enables a more holistic and comprehensive study. Sometimes direct interpretations of material response between techniques become infeasible, necessitating the use of indirect interpretations or signatures to build a complete understanding. In this work, we present a case study that combines signature discovery with electron and synchrotron X-ray characterization techniques to identify regions of intense slip localization -a complex material phenomenon -via a signature within an Inconel-718 alloy undergoing mechanical deformation. This signature relies on the higher order moments of single grain orientation distributions, which prove sensitive to localized deformation. We report the intergranular stress states within a grain neighborhood identified through this signature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-Modal Triangulation for In-situ Boresight Calibration of Frame and Line Cameras Onboard GNSS/INS-assisted UAVS
    Hasheminasab, Meghdad
    Zhou, Tian
    Habib, Ayman
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 51 - 57
  • [22] Real-time in-situ defect detection via multi-modal classification of waveforms for wire arc additive manufacturing
    Clark, Benton
    Ibn Mohsin, Syed
    Poonawala, Hasan A.
    Badurdeen, Fazleena
    Brennan, Raymond
    Jawahir, I. S.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025,
  • [23] Semantic Enhancement Network Integrating Label Knowledge for Multi-modal Emotion Recognition
    Zheng, HongFeng
    Miao, ShengFa
    Yu, Qian
    Mu, YongKang
    Jin, Xin
    Yan, KeShan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 473 - 484
  • [24] NOVEL MULTI-MODAL ENDPOINTS UNCOVERED BY RADIOGENOMICS INTEGRATING CT OR MRI DATA
    Korn, R.
    ANNALS OF ONCOLOGY, 2015, 26 : 13 - 13
  • [25] Prediction of cardiovascular diseases by integrating multi-modal features with machine learning methods
    Li, Pengpai
    Hu, Yongmei
    Liu, Zhi-Ping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66
  • [26] Integrated multi-modal brain signatures predict sex-specific obesity status
    Bhatt, Ravi R.
    Todorov, Svetoslav
    Sood, Riya
    Ravichandran, Soumya
    Kilpatrick, Lisa A.
    Peng, Newton
    Liu, Cathy
    Vora, Priten P.
    Jahanshad, Neda
    Gupta, Arpana
    BRAIN COMMUNICATIONS, 2023, 5 (02)
  • [27] Hybrid Elastic Model for Volumetric Deformation in Multi-modal Virtual Reality Simulation
    Cho, Jaehwan
    Park, Jinah
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 1528 - 1531
  • [28] UHPC girder multi-modal deformation measurements: Photogrammetry, physical sensing, and FEA
    Apostolakis, Georgios
    Mackie, Kevin R.
    Iraniparast, Mostafa
    Sun, Peng
    STRUCTURES, 2024, 70
  • [29] Use of a CT statistical deformation model for multi-modal pelvic bone segmentation
    Thompson, Steve
    Penney, Graeme
    Buie, Damien
    Dasgupta, Prokar
    Hawkes, Dave
    MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [30] U Multi-modal Fission Paths on a Five-dimensional Deformation Surface
    王智明
    朱文杰
    朱鑫
    钟春来
    樊铁栓
    CommunicationsinTheoreticalPhysics, 2019, 71 (04) : 417 - 420