Defect detection;
Wire bond;
Lithium-ion;
Lucid air;
Differential voltage analysis;
Electric vehicle;
LITHIUM-ION BATTERY;
FAULT IDENTIFICATION;
POWER BATTERIES;
CONNECTION;
PACK;
DIAGNOSIS;
ENTROPY;
CELLS;
D O I:
10.1016/j.etran.2023.100284
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Automotive battery packs for electromobility applications consist of a large number of interconnected battery cells. Different cell-to-busbar joining techniques are utilized, with cylindrical cells frequently being contacted using wire bonding. Failure of individual connections can occur due to strong vibrations during operation and improper stress, making detection by the battery management system a necessity. This study investigates the identification of an electrical wire bond failure in a state-of-the-art electric vehicle module of a Lucid Air with 10 series-connected and 30 parallel-connected cells (10s30p). Four individual cells were characterized extensively in order to generate a simulation model taking into account parameter scatter. The failure case under investigation was simulatively incorporated in one parallel circuit and subsequently replicated in experimental validation measurements at the module level. The results show that this defect can be detected using pulses of C/3 or higher currents at various states of charge. An even more robust detection is achieved using differential voltage analysis of constant current C/20 discharge voltage trajectories. This defect identification method does not require any additional measurement sensors beyond the voltage taps and sensors provided by the manufacturer - with one voltage sensor per parallel circuit - and can therefore be implemented during electric vehicle usage, e.g. at dedicated service checks. A discussion on the applicability and scalability as well as the limitations of the method is provided. All measurement data of the state-of-the-art Lucid battery system is available as open source alongside the article.
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
Chinese Acad Sci, Jining Inst Adv Technol, Jining 272000, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
机构:
British Univ Egypt BUE, Fac Engn, Elect Engn Dept, El Sherouk 11837, Egypt
London South Bank Univ, Sch Engn, Elect & Elect Engn Div, 103 Borough Rd, London SE1 0AA, EnglandBritish Univ Egypt BUE, Fac Engn, Elect Engn Dept, El Sherouk 11837, Egypt
Makeen, Peter
Ghali, Hani A.
论文数: 0引用数: 0
h-index: 0
机构:
British Univ Egypt BUE, Fac Engn, Elect Engn Dept, El Sherouk 11837, EgyptBritish Univ Egypt BUE, Fac Engn, Elect Engn Dept, El Sherouk 11837, Egypt
Ghali, Hani A.
Memon, Saim
论文数: 0引用数: 0
h-index: 0
机构:
London South Bank Univ, Sch Engn, Elect & Elect Engn Div, 103 Borough Rd, London SE1 0AA, England
Univ Huddersfield, Sch Comp & Engn, Dept Engn & Technol, Huddersfield HD1 3DR, W Yorkshire, EnglandBritish Univ Egypt BUE, Fac Engn, Elect Engn Dept, El Sherouk 11837, Egypt