Extension domains for Hardy spaces

被引:0
|
作者
Shaabani, Shahaboddin [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
关键词
atomic decomposition; extension domains; Hardy spaces; Markov Inequality; BMO;
D O I
10.4064/sm220726-30-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a proper open subset Omega subset of R(n )is an extension domain for Hp (0 < p <= 1) if and only if it satisfies a certain geometric condition. When n(1/p - 1) is an element of N, this condition is equivalent to the global Markov condition for Omega (c), for p = 1 it is stronger, and when n(1/p - 1) is not an element of N U {0}, every proper open subset is an extension domain for H-p. We show that in each case a linear extension operator exists. We apply our results to study some complemented subspaces of BMO(R-n).
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条