Extension domains for Hardy spaces

被引:0
|
作者
Shaabani, Shahaboddin [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
关键词
atomic decomposition; extension domains; Hardy spaces; Markov Inequality; BMO;
D O I
10.4064/sm220726-30-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a proper open subset Omega subset of R(n )is an extension domain for Hp (0 < p <= 1) if and only if it satisfies a certain geometric condition. When n(1/p - 1) is an element of N, this condition is equivalent to the global Markov condition for Omega (c), for p = 1 it is stronger, and when n(1/p - 1) is not an element of N U {0}, every proper open subset is an extension domain for H-p. We show that in each case a linear extension operator exists. We apply our results to study some complemented subspaces of BMO(R-n).
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [1] On Hardy spaces on worm domains
    Monguzzi, Alessandro
    CONCRETE OPERATORS, 2016, 3 (01): : 29 - 42
  • [2] Weighted variable Hardy spaces on domains
    Oussama Melkemi
    Khedoudj Saibi
    Zouhir Mokhtari
    Advances in Operator Theory, 2021, 6
  • [3] Weighted variable Hardy spaces on domains
    Melkemi, Oussama
    Saibi, Khedoudj
    Mokhtari, Zouhir
    ADVANCES IN OPERATOR THEORY, 2021, 6 (03)
  • [4] Hardy spaces for a class of singular domains
    A.-K. Gallagher
    P. Gupta
    L. Lanzani
    L. Vivas
    Mathematische Zeitschrift, 2021, 299 : 2171 - 2197
  • [5] Hardy spaces for a class of singular domains
    Gallagher, A. -K.
    Gupta, P.
    Lanzani, L.
    Vivas, L.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 2171 - 2197
  • [6] Bergman and Hardy spaces on model domains
    Haslinger, F
    ILLINOIS JOURNAL OF MATHEMATICS, 1998, 42 (03) : 458 - 469
  • [7] Hardy spaces of exact forms on domains
    Lou, ZJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 68 (02) : 351 - 352
  • [8] HARDY-SPACES AND DENJOY DOMAINS
    ZINSMEISTER, M
    ARKIV FOR MATEMATIK, 1989, 27 (02): : 363 - 378
  • [9] Interpolation of Hardy spaces on circular domains
    Mleczko, Pawel
    Szwedek, Radoslaw
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2322 - 2333
  • [10] Exposedness in Hardy spaces of domains of finite connectivity
    Beneker, P
    Wiegerinck, J
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (04): : 487 - 497