Landfill;
methane;
emission;
mitigation;
management;
gas recovery;
D O I:
10.1177/0734242X231200742
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
This article reports on how management approaches influence methane emissions from landfills. The project team created various landfill operational scenarios for different regions of the planet with respect to waste composition, organic waste reduction and landfill gas recovery timing. These scenarios were modelled by applying a basic gas generation model according to the United Nations Intergovernmental Panel on Climate Change (IPCC) recommendations. In general, the IPCC's recommended modelling parameters and default values were used. Based on the modelling undertaken, two options stand out as being the most effective methane mitigation measures in a wide range of conditions throughout the world: (a) early gas recovery and (b) reduction of the amount of biodegradable organic waste accepted in a landfill. It is noted that reduction of organic input to any given landfill can take many years to realize. Moreover, suitable alternative processing or disposal options for the organic waste can be unaffordable for a significant percentage of the planet's population. Although effective, organic waste reduction cannot therefore be the only landfill methane mitigation measure. Early landfill gas recovery can be very effective by applying basic technologies that can be deployed relatively quickly, and at modest cost. Policymakers and regulators from around the globe can significantly reduce adverse environmental impacts from landfill gas emissions by stimulating both the early capture and flaring and/or energy recovery of landfill gas and programmes to reduce the inflow of organic waste into landfills.
机构:
Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R ChinaTongji Univ, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
Bian, Rongxing
Xin, Danhui
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
Univ Delaware, Dept Civil & Environm Engn, Newark, DE USATongji Univ, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
Xin, Danhui
Chai, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R ChinaTongji Univ, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China